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The incompatibility of the measurements constrains the achievable precisions in multiparameter quantum
estimation. Understanding the tradeoff induced by such incompatibility is a central topic in quantum metrology.
Here we provide an approach to study the incompatibility under general p-local measurements, which are the
measurements that can be performed collectively on at most p copies of quantum states. We demonstrate the
power of the approach by presenting a hierarchy of analytical bounds on the tradeoff among the precisions of
different parameters. These bounds lead to a necessary condition for the saturation of the quantum Cramér-Rao
bound under p-local measurements, which recovers the partial commutative condition at p = 1 and the weak
commutative condition at p = ∞. As a further demonstration of the power of the framework, we present another
set of tradeoff relations with the right logarithmic operators.
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I. INTRODUCTION

By utilizing quantum mechanical effects, such as super-
position and entanglement, quantum metrology can achieve
better precision limit than classical metrology. There is now
a good understanding on the local precision limit for single-
parameter quantum estimation, where the precision limit can
be quantified by the single-parameter quantum Cramér-Rao
bound [1–14]. Practical applications, however, typically in-
volve multiple parameters, for which the precision limits are
much less understood [15–42]. Due to the incompatibility
of the optimal measurements for different parameters, the
multiparameter quantum Cramér-Rao bound is in general not
achievable. Tradeoffs among the precisions of different pa-
rameters have to be made. Quantifying such tradeoff is now
one of the main subjects in quantum metrology [28–50].

The incompatibility of the measurements is rooted in the
prohibition of simultaneous measurement of noncommutative
observables, which is one of the defining features of quantum
mechanics. Previous studies on the incompatibility mostly
focus on the extreme cases: either the measurement is sepa-
rable or can be performed collectively on infinite copies of
quantum states. When the measurements can be performed
on infinite number of identical copies of quantum states, the
Holevo bound quantifies the achievable precision [2,46–48].
Except for few special cases [49,50], the Holevo bound in
general can only be evaluated numerically [27]. In practice the
measurements typically can only be performed collectively on
a finite number of quantum states, under which the Holevo
bound is also not achievable in general. In the case of two
parameters, Nagaoka provided a bound under the separable
measurements which is tighter than the Holevo bound [51,52].
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Conlon et al. recently generalized the Nagaoka bound to more
than two parameters, which in general requires numerical
optimization [53]. Gill-Massar bound provided an analytical
measure on the tradeoff induced by the incompatibility of the
separable measurements [28]. For collective measurements
on at most two copies of quantum states, Zhu and Hayashi
have obtained a tradeoff relation for completely unknown
states [25]. However, the incompatibilities under general p-
local measurements, which are the measurements that can be
performed collectively on at most p copies of quantum states,
are little understood.

Here we provide a framework to study the precision under
general p-local measurements. This approach leads to multi-
parameter precision bounds which include the Holevo bound
and the Nagaoka bound as special cases. We also provide
a systematic way to generate hierarchical analytical tradeoff
relations under general p-local measurements. The obtained
tradeoff relations provide a necessary condition for the sat-
uration of the multiparameter quantum Cramér-Rao bound
under p-local measurements, which recovers the partial com-
mutative condition [23] at p = 1 and the weak commutative
condition at p = ∞. Our study thus not only provides a frame-
work that can generate analytical bounds on the tradeoff under
general p-local measurements, but also provides a coherent
picture for the existing results on the extreme cases.

The article is organized as following: in Sec. II we intro-
duce the notations and list the main results; in Sec. III we
present analytical tradeoff relations for pure states; in Sec. IV
we provide multiparameter precision bounds for mixed states
and use it to derive analytical tradeoff relations for mixed
states. The tradeoff relations lead to a necessary condition for
the saturation of the quantum Cramér-Rao bound (QCRB) and
we show how it reduces to the partial commutative condition
at p = 1 and the weak commutative condition at p → ∞;
in Sec. V we demonstrate the versatility of the approach by
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presenting another set of tradeoff relations in terms of the
right logarithmic derivative; in Sec. VI some examples are
presented and Sec. VII concludes. This paper is an extended
version of the companion paper [54] which focuses on the
information geometry under hierarchical quantum measure-
ments.

II. PRECISION LIMIT IN QUANTUM METROLOGY

We first introduce the notations and terminologies that are
used in this article and list the main results.

For the single-parameter quantum estimation, given a
parametrized state ρx, with x as the parameter to be
estimated, by performing a positive-operator-valued measure-
ment (POVM), denoted as {Mα}, on the state, we can get the
measurement result α with a probability p(α|x) = Tr(ρxMα ).
The variance of any locally unbiased estimator x̂ is then lower
bounded by the Cramér-Rao bound [55,56] as δx̂2 � 1

νFC
, here

δx̂2 = E [x̂ − x]2 is the variance of the unbiased estimator,
FC = ∫

α
1

p(α|x) ( ∂x p(α|x)
∂x )2dα is the Fisher information [56], ν is

the number of repetitions of the procedure, which is assumed
to be asymptotically large. By optimizing the POVM, we get
the quantum Cramér-Rao bound (QCRB) [1,2]

δx̂2 � 1

νFC
� 1

νFQ
, (1)

where FQ is the quantum Fisher information (QFI), which is
the maximization of the Fisher information over all POVM
[1,2]. The QFI can be computed directly from the quantum
state as FQ = Tr(ρxL2), here L is the symmetric logarithmic
operator (SLD) which is implicitly defined via the equa-
tion ∂ρx

∂x = 1
2 (Lρx + ρxL). For single-parameter estimation,

the QCRB can always be saturated with the POVM performed
separately on each copy of the state. One POVM that saturates
the single-parameter QCRB is the projective measurement on
the eigenvectors of the SLD.

For multiparameter quantum estimation, where x =
(x1, . . . , xn) with n � 2, the quantum Fisher information be-
comes the quantum Fisher information matrix with the jkth
entry given by

(FQ) jk = Tr

(
ρx

L jLk + LkL j

2

)
, (2)

where Lq is the SLD corresponding to the parameter xq, which
satisfies ∂xqρx = 1

2 (ρxLq + Lqρx ), ∀ q ∈ {1, . . . , n}. The mul-
tiparameter quantum Cramér-Rao bound is given by

Cov(x̂) � 1

ν
F−1

Q , (3)

where Cov(x̂) is the covariance matrix for locally unbiased
estimators, x̂ = (x̂1, . . . , x̂n), with the jkth entry given by
Cov(x̂) jk = E [(x̂ j − x j )(x̂k − xk )], ν is the number of copies
of quantum states. In this article, we assume FQ is nonsingu-
lar so F−1

Q exists, in which case Cov(x̂) � 1
ν
F−1

Q > 0 is also
nonsingular.

Different from the single-parameter quantum estimation,
the multiparameter quantum Cramér-Rao bound is in general
not saturable. This is due to the incompatibility of the optimal
measurements for different parameters. Such incompatibility
is rooted in the prohibition of simultaneous measurement of

noncommutative observables and its manifested effect in mul-
tiparameter estimation is the tradeoff on the precision limits
for the estimation of different parameters.

We can quantify the incompatibility through either
1
ν
Tr[F−1

Q Cov−1(x̂)] [29] or ν Tr[FQCov(x̂)] [20,29,30], which
measures how close Cov(x̂) is to 1

ν
F−1

Q . These two quantities
are roughly reciprocal to each another. Compared to the other
quantities, such as ‖ν Cov(x̂) − F−1

Q ‖ or ‖ 1
ν
Cov−1(x̂) − FQ‖,

1
ν
Tr[F−1

Q Cov−1(x̂)] and ν Tr[FQCov(x̂)] both have the advan-
tage of being invariant under reparametrization. In this article
we will use � = 1

ν
Tr[F−1

Q Cov−1(x̂)] as the measure. When
the QCRB is saturable, Cov(x̂) = 1

ν
F−1

Q , � = Tr(In) = n, here
In denotes the n × n identity matrix. This is the maximal
value � can achieve. When the QCRB is not saturable we
have � < n. The gap between n and � quantifies the in-
compatibility. We will denote the measure under the p-local
measurement as �p = 1

ν
Tr[F−1

Q Cov−1(x̂)] with Cov(x̂) as the
covariance matrix achieved under the optimal p-local mea-
surement. The gap between n and �p decreases with p since
the measurements become less restrictive when p increases,
we thus have �1 � �2 � · · · � �∞. For pure states, however,
we have �1 = �2 = · · · = �∞ since for pure states the opti-
mal measurement can be taken as the 1-local measurement
[15].

The existing results on the incompatibility are mostly
on the extreme cases with either p = ∞ or p = 1, 2. For
p = ∞, the precision limit can be characterized by the
Holevo bound [2], which is given by ν Tr[W Cov(x̂)] �
min{Xj}{Tr[W ReZ (X )] + ‖√W ImZ (X )

√
W ‖1}, where W �

0 is a weighted matrix, Z (X ) is a matrix with its jkth entry
given by Z (X ) jk = Tr(ρxXjXk ), where {X1, . . . , Xn} is a set
of Hermitian operators that satisfy the local unbiased condi-
tion Tr(ρxXj ) = 0 for any j ∈ {1, . . . , n} and Tr(∂xk ρxXj ) =
δ

j
k with δ

j
k as the Kronecker delta, δ

j
k = 1 when k = j and

δ
j
k = 0 when k �= j, ReZ (x) = Z (x)+ZT (x)

2 is the real part of

Z (x), ImZ (x) = Z (x)−ZT (x)
2i is the imaginary part. The Holevo

bound can only be evaluated numerically in general [27]. For
pure states, the Holevo bound can be saturated by 1-local
measurements [15]. For mixed states, the saturation of the
Holevo bound in general requires collective measurements on
infinite copies of the state.

A necessary and sufficient condition for the Holevo bound
to coincide with the QCRB is Tr(ρx[Lj, Lk]) = 0 for any
j, k ∈ {1, . . . , n}. This is called the weak commutative condi-
tion [15]. When the weak commutative condition holds, there
exist collective measurements on infinite copies of quantum
states under which the QCRB is saturated and �∞ = n.

As the Holevo bound corresponds to the minimal value
upon all choice of {Xj}, by making a particular choice of {Xj}
as Xj =∑k (F−1

Q ) jkLk and W = FQ, we have [30]

νTr[FQCov(x̂)] � n + ∥∥F
− 1

2
Q FImF

− 1
2

Q

∥∥
1 � 2n, (4)

where FIm is a matrix with the jkth entry given by (FIm) jk =
1
2i Tr(ρx[Lj, Lk]). The last inequality is obtained from the

fact that FQ + iFIm � 0, which leads to ‖F
− 1

2
Q FImF

− 1
2

Q ‖1 �
Tr(F

− 1
2

Q FQF
− 1

2
Q ) = n. Through the Cauchy-Schwarz
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inequality,

Tr[FQCov(x̂)]Tr
[
F−1

Q Cov−1(x̂)
]

�
∣∣Tr
[
F

1
2

Q Cov
1
2 (x̂)Cov− 1

2 (x̂)F
− 1

2
Q

]∣∣2 = n2, (5)

this leads to a lower bound on �∞ as [20]

�∞ = 1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� n2

n + ∥∥F
− 1

2
Q FImF

− 1
2

Q

∥∥
1

. (6)

We note that the lower bound on �∞ is not sufficient to decide
the incompatibility of the measurements at p = ∞ as it can
not tell whether �∞ can reach n and furthermore how close
�∞ is to n. The upper bound is more informative in this sense.
As if there exists an upper bound which is less than n, we
can tell for sure that the measurements are incompatible, and
furthermore the gap between n and the upper bound provides a
measure on the incompatibility. To our knowledge, except the
trivial bound �∞ � n, there were no analytical upper bounds
on �∞.

For the other extreme case with p = 1, Nagaoka provided
a bound on the precision limit in the case of two parameters
(n = 2) [51,52], as

ν Tr[Cov(x̂)] � min
{X1,X2}

Tr
(
ρxX 2

1

)+ Tr
(
ρxX 2

2

)
+‖√ρx[X1, X2]

√
ρx‖1, (7)

where {X1, X2} are two Hermitian operators satisfying the
locally unbiased condition. The Nagaoka bound in general can
only be evaluated numerically and is tighter than the Holevo
bound. Recently, the Nagaoka bound has been generalized to
n parameters which also requires numerical evaluation [53].

Gill and Massar provided an analytical upper bound on �1

as [28]

�1 � d − 1, (8)

where d is the dimension of the Hilbert space for a single
ρx. The Gill-Massar bound is nontrivial only when n > d − 1.
Recent studies have also obtained some tradeoff relations with
the Ozawa’s uncertainty relation for pairs of parameters [31].

A necessary condition for the saturation of the QCRB un-
der 1-local measurements is the partial commutative condition
[23], which requires all SLDs commute on the support of ρx.
Specifically if we write ρx in the eigenvalue decomposition
as ρx =∑m

1 λi|	i〉〈	i| with λi > 0, the partial commutative
condition is 〈	r |[Lj, Lk]|	s〉 = 0 for any j, k ∈ {1, . . . , n},
and any r, s ∈ {1, . . . , m}. The connection between the partial
commutative condition and the weak commutative condition
remained open [23].

For p = 2, Zhu and Hayashi provided an upper bound on
�2 as

�2 � 3

2
(d − 1), (9)

which is nontrivial only when n > 3
2 (d − 1).

For general p, the incompatibility is little understood. In
this article, we provide a framework to study the incompat-
ibility under general p-local measurements. This framework
provides precision bounds that include the Holevo bound and
the Nagaoka bound as special cases, and leads to nontrivial

analytical upper bounds for general �p. A necessary condition
for the saturation of the QCRB can also be obtained, which
recovers the partial commutative condition at p = 1 and the
weak commutative condition at p → ∞. The multiparameter
precision bounds are presented in Sec. IV A. Here we first list
the analytical upper bounds and the necessary condition for
the saturation of QCRB under general p-local measurements.

(1) For pure states, we have

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� n − f (n)

∥∥F
− 1

2
Q FImF

− 1
2

Q

∥∥2

F , (10)

where ‖ . . . ‖F is the Frobenius norm and n is the number
of parameters, f (n) = max{ 1

4(n−1) ,
n−2

(n−1)2 ,
1
5 } which can be

equivalently written as

f (n) =

⎧⎪⎨
⎪⎩

1
4(n−1) when n = 2,

n−2
(n−1)2 when n = 3 or 4,
1
5 when n � 5.

We note the bounds for pure states do not depend on p since
for pure states �1 = �2 = · · · = �∞.

(2) For mixed states under p-local measurements, we have

�p �n − f (n)

∥∥∥∥F
− 1

2
Q F̄ImpF

− 1
2

Q

p

∥∥∥∥
2

F

, (11)

where f (n) = max{ 1
4(n−1) ,

n−2
(n−1)2 ,

1
5 }, F̄Imp is the imaginary

part of F̄ =∑q F̄uq with each F̄uq equal to either Fuq or F T
uq

,
where Fuq is a n × n matrix with the jkth entry given by

(
Fuq

)
jk

= 〈uq|
√

ρ
⊗p
x L j pLkp

√
ρ

⊗p
x |uq〉, (12)

Lj p is the SLD of ρ
⊗p
x corresponding to the parameter

x j , and {|uq〉} are any set of vectors in H⊗p
d that satisfies∑

q |uq〉〈uq| = Id p with Id p denote the d p × d p identity matrix.
(3) For mixed states under p-local measurements, we ob-

tain another bound as

�p � n − 1

4(n − 1)

∥∥∥∥Cp

p

∥∥∥∥
2

F

, (13)

where

(Cp) jk = 1

2

∥∥√ρ
⊗p
x [L̃ j p, L̃kp]

√
ρ

⊗p
x

∥∥
1, (14)

L̃ j p is the SLD of ρ
⊗p
x under the reparametrization such that

the quantum Fisher information matrix (QFIM) of ρx equals to

the identity, specifically L̃ j p =∑q(F
− 1

2
Q ) jqLqp with Lqp as the

SLD of ρ
⊗p
x corresponding to the original parameter xq. We

note that ‖Cp

p ‖F � ‖F
− 1

2
Q F̄ImpF

− 1
2

Q

p ‖F , this bound is thus tighter

than the bound in Eq. (11) when f (n) = 1
4(n−1) ; however, it

can be less tighter when f (n) = n−2
(n−1)2 or 1

5 .
(4) From the above bound, we obtain a necessary condi-

tion for the saturation of the QCRB under p-local measure-
ments, which is Cp

p = 0. For p = 1, this reduces to the partial
commutative condition. For p → ∞, we prove that

lim
p→∞

(Cp) jk

p
= 1

2
|Tr(ρx[L̃ j, L̃k])|. (15)

062442-3



HONGZHEN CHEN, YU CHEN, AND HAIDONG YUAN PHYSICAL REVIEW A 105, 062442 (2022)

The condition Cp

p = 0 thus reduces to the weak commutative

condition Tr(ρx[L̃ j, L̃k]) = 0, ∀ j, k, at p → ∞. This clarifies
the relation between the partial commutative condition and the
weak commutative condition, which solves an open question
[23].

(5) We provide another simpler bound for mixed states
which can be calculated with operators only on a single ρx.

Given ρx =∑m
q=1 λq|	q〉〈	q| with λq > 0 in the eigen-

value decomposition, under p-local measurements we have

�p � n − 1

4(n − 1)

∥∥∥∥Tp

p

∥∥∥∥
2

F

, (16)

where Tp is a n × n matrix with the jkth entry given by

(Tp) jk = 1

2
E

(∣∣∣∣∣
p∑

r=1

〈	vr |[L̃ j, L̃k]|	vr 〉
∣∣∣∣∣
)

, (17)

where E (·) denotes the expected value, each |	vr 〉 is ran-
domly and independently chosen from the eigenvectors of
ρx with a probability equal to the corresponding eigenvalue,
i.e., each |	vr 〉 takes |	q〉 with probability λq, q ∈ {1, . . . , m}.
L̃ j =∑q(F

− 1
2

Q ) jqLq and L̃k =∑q(F
− 1

2
Q )kqLq. For large p, this

bound is almost as tight as the bound with Cp

p , the difference

between Tp

p and Cp

p is at most of the order O( 1√
p ) with

(Tp) jk

p
� (Cp) jk

p
� (Tp) jk

p
+ O

(
1√
p

)
. (18)

Asymptotically they converge to the same value,

lim
p→∞

(Tp) jk

p
= lim

p→∞
(Cp) jk

p
= 1

2
|Tr(ρx[L̃ j, L̃k])|. (19)

(6) To demonstrate the versatility of the framework, we
provide another set of bounds with the right logarithm deriva-
tive (RLD) operators.

�p � Tr
[
F−1

Q F RLD
Re

]− 1

4(n − 1)

∥∥∥∥CRLD
p

p

∥∥∥∥
2

F

, (20)

where F RLD
Re is the real part of the RLD quantum Fisher

information matrix with the jkth entry given by (F RLD) jk =
Tr(ρxLR

j LR†
k ), where LR

j is the RLD operator corresponding to
the parameter x j , which can be obtained from ∂x j ρx = ρxLR

j ,

(CRLD
p ) jk= min{ 1

2‖
√

ρ
⊗p
x (L̃R

j pL̃R†
kp−L̃R

kpL̃R†
j p )
√

ρ
⊗p
x ‖1, 2p} with

L̃R
j p =∑q(F

− 1
2

Q ) jqLR
qp and L̃R

kp =∑q(F
− 1

2
Q )kqLR

qp with LR
qp as

the RLD operator of ρ
⊗p
x corresponding to the parameter xq.

These bounds are in general not saturable, however, they
are nontrivial regardless of the number of the parameters and
the dimension of the quantum states. The upper bounds can
also be directly transformed to the lower bounds for various
other measures via the Cauchy-Schwarz inequality. For ex-
ample, from the upper bound

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� n − 1

4(n − 1)

∥∥∥∥Cp

p

∥∥∥∥
2

F

, (21)

we can obtain a lower bound for ν Tr[FQCov(x̂)] via the
Cauchy-Schwarz inequality as

ν Tr[FQCov(x̂)] � n2

1
ν
Tr
[
F−1

Q Cov−1(x̂)
]

� n2

n − 1
4(n−1)

∥∥Cp

p

∥∥2

F

� n + 1

4(n − 1)

∥∥∥∥Cp

p

∥∥∥∥
2

F

, (22)

which provides a lower bound on ν Tr[FQCov(x̂)] under
p-local measurements. ν Tr[FQCov(x̂)] achieves the mini-
mal value n when the QCRB is saturable and the gap
between ν Tr[FQCov(x̂)] and n provides a measure on the
incompatibility. We note that the transformation from the
upper bound to the lower bound via the Cauchy-Schwarz
inequality does not work the other way, i.e., the lower
bound on ν Tr[FQCov(x̂)] can not be directly transformed
to the upper bound on 1

ν
Tr[F−1

Q Cov−1(x̂)] via the Cauchy-
Schwarz inequality. This is one advantage of choosing
1
ν
Tr[F−1

Q Cov−1(x̂)] over ν Tr[FQCov(x̂)] as the measure of the
incompatibility.

Similarly, we can obtain lower bounds on the weighted
covariance matrix ν Tr[W Cov(x̂)], via the Cauchy-Schwarz
inequality as

ν Tr[W Cov(x̂)] �
(
Tr
√

F
− 1

2
Q W F

− 1
2

Q

)2
1
ν
Tr
[
F−1

Q Cov−1(x̂)
] . (23)

For example, from the upper bound

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� n − 1

4(n − 1)

∥∥∥∥Cp

p

∥∥∥∥
2

F

, (24)

we can obtain a lower bound

ν Tr[W Cov(x̂)] �
(
Tr
√

F
− 1

2
Q W F

− 1
2

Q

)2
n − 1

4(n−1)

∥∥Cp

p

∥∥2

F

, (25)

which constrains the precision that can be achieved under p-
local measurements.

Aside from these analytical bounds, multiparameter pre-
cision bounds for mixed states, which require numerical
optimization, are presented in Sec. IV A.

III. ANALYTICAL BOUNDS FOR PURE STATES

We start the derivation of the bounds for pure states, then
generalize it to mixed states in the next section. Given a
probe state |	x〉 with x = (x1, x2, . . . , xn), and q operators
{Y1,Y2, . . . ,Yq}, we have

S = (Y1|	x〉 . . . Yq|	x〉)†(Y1|	x〉 . . . Yq|	x〉)

� 0, (26)

where S is a q × q matrix with its jkth entry given by
(S) jk = 〈	x|Y †

j Yk|	x〉 = Tr(ρxY
†
j Yk ) with ρx = |	x〉〈	x|. We

note that S � 0 also forms the basis for the generalized
Robertson uncertainty relation [57,58].
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We first consider a single copy of the state, for ν copies of
the states, we can just replace |	(x)〉 with |	(x)〉⊗ν . Given
a measurement {Mα} with

∑
α Mα = I , we can construct n

observables as

Xj =
∑

α

[x̂ j (α) − x j]Mα, (27)

where x̂ j is the estimator for x j . For locally unbiased estima-
tor, we have

Tr(ρxXj ) = 0, j = 1, . . . , n (28)

and

Tr(∂x j ρxXk ) = δ
j
k . (29)

Let Lj be the SLD for x j with j ∈ {1, . . . , n}, then by
replacing the set of {Yj} in Eq. (26) with the 2n operators,
{X1, . . . , Xn, L1, . . . , Ln}, we have

S =
(

A B
B† F

)
� 0, (30)

where A, B, F are n × n matrices with the entries given by

(A)k j = Tr(ρxXkXj ),

(B)k j = Tr(ρxXkL j ),

(F )k j = Tr(ρxLkL j ).

(31)

We can write these matrices in terms of the real and imag-
inary parts as A = ARe + iAIm, B = BRe + iBIm, F = FQ +
iFIm, where

(ARe)k j = 1
2 Tr(ρx{Xk, Xj}),

(BRe)k j = 1
2 Tr(ρx{Xk, Lj}), (32)

(FQ)k j = 1
2 Tr(ρx{Lk, Lj}),

where {X,Y } = XY + Y X is the anticommutator, and

(AIm)k j = 1

2i
Tr(ρx[Xk, Xj]),

(BIm)k j = 1

2i
Tr(ρx[Xk, Lj]),

(FIm)k j = 1

2i
Tr(ρx[Lk, Lj]),

(33)

where [X,Y ] = XY − Y X is the commutator. It is easy to see
that FQ is exactly the quantum Fisher information matrix, and
the local unbiased condition in Eq. (29) can be equivalently
written as

Tr
(
ρx

1
2 {Lj, Xk}

) = δ
j
k , (34)

which means BRe = I . A is the same as Z (X ) in the Holevo
bound; however, we use a different notation here as in the case
of mixed states it can be different from Z (X ).

As Cov(x̂) � A [2,18,59], we have(
Cov(x̂) B

B† F

)
=
(

Cov(x̂) − A 0
0 0

)
+
(

A B
B† F

)
� 0.

(35)
Using the Schur’s complement [60] we have

F − B†Cov−1(x̂)B � 0, (36)

this can be equivalently written as

FQ − Cov−1(x̂) − BT
ImCov−1(x̂)BIm

+i
[
FIm + BT

ImCov−1(x̂) − Cov−1(x̂)BIm
]
� 0. (37)

Since for a positive-semidefinite matrix M � 0, the real part
is also positive semidefinite, i.e., MRe = M+MT

2 � 0. We thus
have FQ − Cov−1(x̂) − BT

ImCov−1(x̂)BIm � 0, which can be
equivalently written as

FQ − Cov−1(x̂) � BT
ImCov−1(x̂)BIm. (38)

Note that BT
ImCov−1(x̂)BIm � 0, thus the real part of Eq. (37)

already gives a tighter bound than the QCRB.

By multiplying F
− 1

2
Q from both the left and the right of

Eq. (37), we get

I − ˜Cov
−1

(x̂) − B̃T
Im

˜Cov
−1

(x̂)B̃Im

+i
[
F̃Im + B̃T

Im
˜Cov

−1
(x̂) − ˜Cov

−1
(x̂)B̃Im

]
� 0, (39)

here ˜Cov
−1

(x̂) = F
− 1

2
Q Cov−1(x̂)F

− 1
2

Q , B̃Im = F
1
2

Q BImF
− 1

2
Q ,

F̃Im = F
− 1

2
Q FImF

− 1
2

Q . This is equivalent to the reparametriza-
tion which changes the QFIM to the identity, and ˜Cov(x̂)
can be regarded as the covariance matrix under the
reparametrization. Various tradeoff relations can be obtained
from Eq. (39). In the Appendix A, we show that Eq. (39)
implies

1 − [ ˜Cov
−1

(x̂)] j j + 1 − [ ˜Cov
−1

(x̂)]kk � 1
2 |(F̃Im) jk|2. (40)

This describes a tradeoff between [ ˜Cov
−1

(x̂)] j j and

[ ˜Cov
−1

(x̂)]kk as they can not reach 1 simultaneously when
(F̃Im) jk �= 0.

By summing Eq. (40) over all different choices of j, k, we
can obtain

Tr
[
F−1

Q Cov−1(x̂)
] = Tr[ ˜Cov

−1
(x̂)]

� n − 1

4(n − 1)

∥∥F
− 1

2
Q FImF

− 1
2

Q

∥∥2

F , (41)

where ‖ · ‖F =
√∑

j,k |(·) jk|2 is the Frobenius norm.

When there are ν copies of the state, we can replace |	(x)〉
with |	(x)〉⊗ν and repeat the procedure to get the tradeoff
relation as

Tr
[
F−1

Qν Cov−1(x̂)
]

� n − 1

4(n − 1)

∥∥F
− 1

2
Qν FImνF

− 1
2

Qν

∥∥2

F , (42)

where Fν = FQν + iFImν is the corresponding operator associ-
ated with |	(x)〉⊗ν . It is easy to verify that FQν = νFQ, which
is the QFIM for |	(x)〉⊗ν , and FImν = νFIm. Thus, when there
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are ν copies of the state, the tradeoff relation is given by

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]

� n − 1

4(n − 1)

∥∥F
− 1

2
Q FImF

− 1
2

Q

∥∥2

F
, (43)

This tradeoff relation holds for arbitrary measurements on ν

copies of the states.
The tradeoff relation for ν copies of the pure state can

also be obtained in an alternative way. Note that for pure
states the optimal measurement can be taken as the 1-local
measurement [15], if we repeat the 1-local measurement ν

times with ν copies of the state, Cov(x̂) will be reduced by ν

times. Equation (41), which is the tradeoff relation for a single
state, then directly becomes Eq. (43) since Cov(x̂) is reduced
by ν times. The two ways to get Eq. (43), however, have
different meanings. The derivation that uses |	(x)〉⊗ν allows
arbitrary measurement on |	(x)〉⊗ν while the derivation with
the repetition of the 1-local measurement only uses 1-local
measurement. The reason that they lead to the same tradeoff
relation is that for pure states 1-local measurement is already
optimal, allowing collective measurements does not improve
the precision. The situation is different for mixed states as we
will see in the next section.

The bound in Eq. (43) is obtained by summing the tradeoff
relations between pairs of parameters in Eq. (40), which ig-
nores the correlations with the other parameters. The presence
of other parameters, however, can affect the precisions. In the
Appendix A we show that when n � 3, by including the cor-
relations among the parameters, the bound can be improved as

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]

� n − n − 2

(n − 1)2

∥∥F
− 1

2
Q FImF

− 1
2

Q

∥∥2

F . (44)

Since n−2
n−1 > 1

4 when n � 3, this is tighter than the bound in
Eq. (43). It is also tighter than summing the tightest bound
for a pair of parameters in previous study [31].

We can obtain even tighter tradeoff relation for large n as
(see Appendix A for detailed derivation)

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� n − 1

5

∥∥F
− 1

2
Q FImF

− 1
2

Q

∥∥2

F , (45)

which is tighter than Eq. (44) when n � 5.
The three bounds in Eqs. (43)–(45) can be written con-

cisely as

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� n − f (n)

∥∥F
− 1

2
Q FImF

− 1
2

Q

∥∥2

F , (46)

where f (n) = 1
4(n−1) ,

n−2
(n−1)2 or 1

5 . These bounds are all valid
for any n. Since larger f (n) leads to tighter bound we can take
f (n) = max{ 1

4(n−1) ,
n−2

(n−1)2 ,
1
5 } to get a tighter upper bound.

IV. PRECISION BOUNDS FOR MIXED STATES

For pure states, the ultimate precision under the local mea-
surement can be quantified by the Holevo bound since for
pure states the Holevo bound can be saturated with the 1-local
measurement. For mixed states, however, the Holevo bound is
in general not saturable under the local measurement. We will

first provide a tighter bound for the mixed states under local
measurement, then use it to obtain the upper bounds for the
incompatibility measures.

A. Multiparameter precision bound for mixed states

For a mixed state ρx, with x = (x1, . . . , xn), given any
POVM, {Mα}, and any |u〉, we define Covu as a n × n matrix
with the jkth entry given by

(Covu) jk =
∑

α

[x̂ j (α) − x j][x̂k (α) − xk]〈u|√ρxMα

√
ρx|u〉,

(47)
and Au as a n × n matrix with the jkth entry given by

(Au) jk = 〈u|√ρxX †
j Xk

√
ρx|u〉

= 1

2
〈u|√ρx{Xj, Xk}√ρx|u〉

+ i
1

2i
〈u|√ρx[Xj, Xk]

√
ρx|u〉, (48)

where Xj =∑α[x̂ j (α) − x j]Mα is locally unbiased.
We first note that for any set of {|uq〉} that satisfies∑
q |uq〉〈uq| = I , we have Cov(x̂) =∑q Covuq . This can be

verified by comparing
∑

q(Covuq ) jk and Cov(x̂) jk as∑
q

(
Covuq

)
jk

=
∑

q

∑
α

[x̂ j (α) − x j][x̂k (α) − xk]〈uq|√ρxMα

√
ρx|uq〉

=
∑

α

[x̂ j (α) − x j][x̂k (α) − xk]Tr(ρxMα )

= Cov(x̂) jk . (49)

And for any |u〉, we have Covu � Au(see Appendix D).
Since Covu is symmetric, we also have Covu = CovT

u �
AT

u . Thus, for any set of {|uq〉} that satisfies
∑

q |uq〉〈uq| = I

and any choices of Āuq ∈ {Auq , AT
uq

}, we have

Cov(x̂) =
∑

q

Covuq � Ā =
∑

q

Āuq , (50)

where Āuq equal to either Auq or AT
uq

. We can write Ā in terms

of the real and imaginary parts as Ā = ĀRe + iĀIm, then

ν Tr[W Cov(x̂)] � min
{Xj}

Tr[W ĀRe] + ‖
√

W ĀIm

√
W ‖1, (51)

where W � 0 is the weight matrix and the number of repeti-
tion ν has been included.

This includes the Holevo bound [2] and the Nagaoka
bound [51,52] as special cases. To see the connection with
the Holevo bound, we just choose Āuq = Auq for all q, then
for any set of {|uq〉} that satisfies

∑
q |uq〉〈uq| = I , we have

Ā =∑q Auq = Z (X ) since (note that Xj is Hermitian)

Ā jk =
∑

q

(
Auq

)
jk

=
∑

q

〈uq|√ρxX †
j Xk

√
ρx|uq〉

= Tr(ρxX †
j Xk )

= Z (X ) jk . (52)
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Equation (51) then reduces to the Holevo bound. When there
are only two parameters x1 and x2, we can choose the set of
{|uq〉} as the eigenvectors of

√
ρx[X1, X2]

√
ρx and choose Āuq

as

Āuq :=
{Auq for 1

2i 〈uq|√ρx[X1, X2]
√

ρx|uq〉 � 0,

AT
uq

for 1
2i 〈uq|√ρx[X1, X2]

√
ρx|uq〉 < 0.

(53)

Intuitively, Auq can be written as the real and imaginary parts
as Auq = AuqRe + iAuqIm, where AuqIm is a 2 × 2 skew symmet-

ric matrix ( 0 aq

−aq 0 ) with aq = 1
2i 〈uq|√ρx[X1, X2]

√
ρx|uq〉.

Āuq is then chosen according to the sign of aq, Āuq =
Auq when aq � 0 and Āuq = AT

uq
when aq � 0. The imagi-

nary parts of different Āuq are then aligned and add up to
1
2‖√ρx[X1, X2]

√
ρx‖1. With this choice we then have

Ā =
∑

q

Āuq

=
(

Tr
(
ρxX 2

1

)
1
2 Tr[ρx{X1, X2}]

1
2 Tr[ρx{X1, X2}] Tr

(
ρxX 2

2

) )

+ i

(
0 1

2‖√ρx[X1, X2]
√

ρx‖1

− 1
2‖√ρx[X1, X2]

√
ρx‖1 0

)
.

(54)

Equation (51) then becomes (with W = I)

ν Tr[Cov(x̂)]

� min
{X1,X2}

Tr[ĀRe] + ‖ĀIm‖1

= min
{X1,X2}

Tr
(
ρxX 2

1

)+ Tr
(
ρxX 2

2

)+ ‖√ρx[X1, X2]
√

ρx‖1,

(55)

which recovers the Nagaoka bound [51,52]. This establishes a
connection between the Holevo bound and the Nagaoka bound
and improves our understanding on these existing bounds.

The optimal choice of |uq〉 and Āuq provides the tightest
bound, but any choice leads to a valid bound. We now show
how nontrivial analytical upper bounds on �p can be obtained
by making particular choices of |uq〉 and Āuq .

B. Incompatibility under 1-local measurements

Given a mixed state ρx, we can make a reparametriza-

tion with x̃ = F
1
2

Q x under which F̃Q = I , and ˜Cov(x̂) =
F

1
2

Q Cov(x̂)F
1
2

Q . Thus, without loss of generality, we start with
the case that the QFIM equals to the identity.

We first consider the precision under 1-local measure-
ments, i.e., separable measurements. Note that for any vector
|u〉, we have

Su = (X1
√

ρx|u〉 . . . Xn
√

ρx|u〉 L1
√

ρx|u〉 . . . Ln
√

ρx|u〉)†

(X1
√

ρx|u〉 . . . Xn
√

ρx|u〉 L1
√

ρx|u〉 . . . Ln
√

ρx|u〉)

=
(

Au Bu

B†
u Fu

)
� 0, (56)

where Au, Bu, and Fu are n × n matrices with the entries given
by

(Au) jk = 〈u|√ρxX †
j Xk

√
ρx|u〉

= 1

2
〈u|√ρx{Xj, Xk}√ρx|u〉

+ i
1

2i
〈u|√ρx[Xj, Xk]

√
ρx|u〉,

(Bu) jk = 〈u|√ρxX †
j Lk

√
ρx|u〉

= 1

2
〈u|√ρx{Xj, Lk}√ρx|u〉

+ i
1

2i
〈u|√ρx[Xj, Lk]

√
ρx|u〉,

(Fu) jk = 〈u|√ρxL†
j Lk

√
ρx|u〉

= 1

2
〈u|√ρx{Lj, Lk}√ρx|u〉

+ i
1

2i
〈u|√ρx[Lj, Lk]

√
ρx|u〉. (57)

For a set of {|uq〉} with
∑

q |uq〉〈uq| = I , we obtain a
corresponding set of {Suq}. We then let S̄ =∑q S̄uq where
S̄uq ∈ {Suq , ST

uq
}. Since Suq � 0 and ST

uq
� 0, it is then easy to

see that

S̄ =
∑

q

S̄uq =
(

Ā B̄
B̄† F̄

)
� 0, (58)

where F̄ =∑q F̄uq with F̄uq equal to either Fuq or F T
uq

, Ā =∑
q Āuq with Āuq equals to either Auq or AT

uq
, and B̄ =∑q B̄uq .

Since S̄uq has the same real part as Suq , the real part of S̄ is
independent of the choices of S̄uq . In particular, the real part
of F̄ always equals to the QFIM as

(F̄Re) jk =
∑

q

1

2
〈uq|√ρx{Lj, Lk}√ρx|uq〉

= Tr

[
ρx

1

2
{Lj, Lk}

]
= (FQ) jk . (59)

Similarly, it is straightforward to see that the real part of B̄
also remains the same as

(B̄Re) jk =
∑

q

1

2
〈uq|√ρx{Xj, Lk}√ρx|uq〉

= Tr

[
ρx

1

2
{Xj, Lk}

]

= δ
j
k , (60)

where the last equality is the locally unbiased condition. We
can thus write B̄ = I + iB̄Im. Since Cov(x̂) � Ā, we have(

Cov(x̂) B̄
B̄† F̄

)
� 0. (61)

062442-7



HONGZHEN CHEN, YU CHEN, AND HAIDONG YUAN PHYSICAL REVIEW A 105, 062442 (2022)

Then by following the same derivation as in the previous
section we have

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]

� n − f (n)
∥∥F

− 1
2

Q F̄ImF
− 1

2
Q

∥∥2

F
, (62)

where f (n) = max{ 1
4(n−1) ,

n−2
(n−1)2 ,

1
5 }, F̄Im is the imaginary

part of F̄ =∑q F̄uq with each F̄uq equals to either Fuq or F T
uq

which can be optimized to get the maximal ‖F
− 1

2
Q F̄ImF

− 1
2

Q ‖F .
We can also obtain additional bounds by combining dif-

ferent choices of {|uq〉}. In particular, we can choose different
set of {|uq〉} according to different pair of indices, say α �=
β ∈ {1, 2, . . . , n}. Specifically, for a given pair of indices, α

and β, we choose a set of {|u1〉, . . . , |ud〉} as the orthonormal
eigenvectors of

√
ρx[Lα, Lβ ]

√
ρx. Note that

√
ρx[Lα, Lβ]

√
ρx

is skew Hermitian whose eigenvalues are pure imaginary,
thus for any eigenvector |uq〉, 〈uq|√ρx[Lα, Lβ ]

√
ρx|uq〉 = iaq

with aq a real number. The imaginary axis of (Fuq )αβ =
〈uq|√ρxLαLβ

√
ρx|uq〉 is then 1

2i 〈uq|√ρx[Lα, Lβ ]
√

ρx|uq〉 =
1
2 aq. We then let

S̄uq :=
{Suq for aq � 0,

ST
uq

for aq < 0,
(63)

and sum S̄uq to get

S̄ =
∑

q

S̄uq =
(

Ā B̄
B̄† F̄

)
� 0, (64)

where F̄ =∑q F̄uq with F̄uq equal to either Fuq or F T
uq

which
are determined by the choices in Eq. (63) so that the imaginary
parts of all (F̄uq )αβ are all positive, Ā =∑q Āuq with Āuq

equals to either Auq or AT
uq

, and B̄ =∑q B̄uq . It is easy to verify
that according to the choices in Eq. (63), which aligns the
imaginary part of the αβth entry of each F̄uq with the same
sign, we have

(F̄Im)αβ =
∑

q

1

2
|aq| = 1

2
‖√ρx[Lα, Lβ ]

√
ρx‖1, (65)

where ‖ . . . ‖1 is the trace norm which equals to the sum of
singular values and for the skew Hermitian matrix just equals
to the sum of the absolute value of the eigenvalues. Again,
since Cov(x̂) � Ā, we have(

Cov(x̂) B̄
B̄† F̄

)
� 0. (66)

Then by following the same derivation as in the previous
section, under the parametrization that FQ = I , we can get the
same tradeoff relation, similar as Eq. (40). Specifically, for the
entries associated with α and β, we have

1 − [Cov−1(x̂)]αα + 1 − [Cov−1(x̂)]ββ � 1

2
|(F̄Im)αβ |2

(67)
with (F̄Im)αβ = 1

2‖√ρx[Lα, Lβ ]
√

ρx‖1. We note that here we
make the choices of {|uq〉} and {S̄uq} according to a partic-
ular pair of indices α and β, thus only the imaginary part
of (F̄Im)αβ equals to 1

2‖√ρx[Lα, Lβ ]
√

ρx‖1, for other indices

( j, k) �= (α, β ), in general (F̄Im) jk �= 1
2‖√ρx[Lj, Lk]

√
ρx‖1.

However, for different pairs of indices, we can repeat the
procedure, i.e., choose another set of {|uq〉} and S̄uq , to get
the same tradeoff relations with different indices as

1 − [Cov−1(x̂)] j j + 1 − [Cov−1(x̂)]kk

� 1
2

(
1
2‖√ρx[Lj, Lk]

√
ρx‖1

)2
. (68)

We note that these tradeoff relations are on the same covari-
ance matrix as the choices of {|uq〉} and S̄uq do not affect
the covariance matrix itself, they are only used to obtain the
bounds.

By summing the tradeoff relations in Eq. (68) over all pairs
of indices we get

1

ν
Tr[Cov−1(x̂)] � n − 1

4(n − 1)
‖C1‖2

F , (69)

where ν comes from repeating the 1-local measurement on ν

copies of the state, C1 is a matrix with its entries given by

(C1) jk = 1
2‖√ρx[Lj, Lk]

√
ρx‖1. (70)

We note that C1 is different from any particular F̄Im. We get
different F̄Im by choosing different {|uq〉} and S̄uq for different
pairs of indices. C1 is obtained by combining the tradeoff
relations in Eq. (68) which are obtained by choosing different
{|uq〉} and S̄uq for different indices.

As stated at the beginning of this section, when FQ �= I in
the original parametrization, we can make a reparametrization

x̃ = F
1
2

Q x, under which F̃Q = I , ˜Cov( ˆ̃x) = F
1
2

Q Cov(x̂)F
1
2

Q , L̃ j =∑
q(F

− 1
2

Q ) jqLq, the tradeoff relation in Eq. (69) can be written
in the original parametrization as

1

ν
Tr
[
F−1

Q Cov−1(x̂)
] = 1

ν
Tr[ ˜Cov

−1
(x̂)]

� n − 1

4(n − 1)
‖C1‖2

F , (71)

with the entries of C1 given by

(C1) jk = 1

2
‖√ρx[L̃ j, L̃k]

√
ρx‖1

= 1

2

∥∥∥∥∥√ρx

[∑
q

(
F

− 1
2

Q

)
jqLq,

∑
q

(
F

− 1
2

Q

)
kqLq

]
√

ρx

∥∥∥∥∥
1

.

(72)

The tradeoff relation immediately gives a necessary con-
dition for the saturation of the QCRB under the 1-local
measurement. To saturate the QCRB, i.e., for Cov(x̂) =
1
ν
F−1

Q , it requires 1
ν
Tr[F−1

Q Cov−1(x̂)] = n, which is only pos-
sible when C1 = 0, i.e.,

√
ρx[L̃ j, L̃k]

√
ρx = 0 for any j, k.

This is the partial commutative condition expressed under
the parametrization where F̃Q = I , and is equivalent to the
partial commutative condition in the original parametrization
as

√
ρx[Lq, Ls]

√
ρx = 0 for any q and s. The equivalence can

be seen by writing Lq =∑ j (F
1
2

Q )q j L̃ j and Ls =∑k (F
1
2

Q )skL̃k;
it is then easy to see that when

√
ρx[L̃ j, L̃k]

√
ρx = 0 for any

j, k we have
√

ρx[Lq, Ls]
√

ρx = 0 for any q and s, and vice
versa.
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C. Incompatibility measures under p-local measurements

For p-local measurements, which are the collective mea-
surements on at most p copies of the state, we can get
the tradeoff relation by replacing ρx with ρ

⊗p
x in the

previous section. Again we first assume FQ = I for ρx,
then FQp = pI for ρ

⊗p
x . Following the same procedure as

the previous section, for a fixed pair of j, k, by substi-

tuting ˜Cov
−1

(x̂) = F
− 1

2
Qp Cov−1(x̂)F

− 1
2

Qp = Cov−1(x̂)
p and F̃Imp =

F
− 1

2
Qp F̄ImpF

− 1
2

Qp = F̄Imp

p in Eq. (40) we can get

1 − Cov−1(x̂) j j

p
+ 1 − Cov−1(x̂)kk

p
� 1

2

∣∣∣∣ (F̄Imp) jk

p

∣∣∣∣
2

(73)

with (F̄Imp) jk = 1
2‖
√

ρ
⊗p
x [Lj p, Lkp]

√
ρ

⊗p
x ‖1, where Lj p is the

SLD corresponding to the parameter x j for ρ
⊗p
x , which can

be written as Lj p =∑p
r=1 L(r)

j with L(r)
j = I⊗(r−1) ⊗ Lj ⊗

I⊗(p−r), r = 1, . . . , p, Lj is the SLD for a single copy of the
state.

Again, we can repeat the procedure for different pairs of
j, k and sum over all pairs of j, k to get the tradeoff relation.
Under the parametrization that FQ = I , we have

1

ν/p

Tr[Cov−1(x̂)]

p
= 1

ν
Tr[Cov−1(x̂)]

� n − 1

4(n − 1)

∥∥∥∥Cp

p

∥∥∥∥
2

F

, (74)

where the factor 1
ν/p comes from repeating the p-local mea-

surement ν/p times on a total ν copies of the state, Cp is a
matrix with the entries given by

(Cp) jk = 1

2

∥∥√ρ
⊗p
x [Lj p, Lkp]

√
ρ

⊗p
x

∥∥
1. (75)

If FQ �= I in the initial parametrization, we can again

make a reparametrization x̃ = F
1
2

Q x first, under which L̃ j =∑
q(F

− 1
2

Q ) jqLq. The tradeoff relation can then be written as

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� n − 1

4(n − 1)

∥∥∥∥Cp

p

∥∥∥∥
2

F

, (76)

with

(Cp) jk = 1
2

∥∥√ρ
⊗p
x [L̃ j p, L̃kp]

√
ρ

⊗p
x

∥∥
1, (77)

where L̃ j p =∑q(F
− 1

2
Q ) jqLqp.

‖Cp

p ‖F determines the gap between the bound and n, which
measures the incompatibility of the measurements. Since p-
local measurement is a subset of (p + 1)-local measurement,
we expect that ‖Cp+1

p+1 ‖F � ‖Cp

p ‖F since there should be less
incompatibility when more measurements are allowed. This
can be verified as∥∥√ρ

⊗(p+1)
x [L̃ j(p+1), L̃k(p+1)]

√
ρ

⊗(p+1)
x

∥∥
1

p + 1

=
∥∥∑p+1

r=1

√
ρ

⊗(p+1)
x

[
L̃(r)

j , L̃(r)
k

]√
ρ

⊗(p+1)
x

∥∥
1

p + 1

=
∥∥(1/p)

∑p+1
q=1

∑
r �=q

√
ρ

⊗(p+1)
x

[
L̃(r)

j , L̃(r)
k

]√
ρ

⊗(p+1)
x

∥∥
1

p + 1

�
∑p+1

q=1

∥∥∑
r �=q

√
ρ

⊗(p+1)
x

[
L̃(r)

j , L̃(r)
k

]√
ρ

⊗(p+1)
x

∥∥
1

p(p + 1)

= (p + 1)
∥∥√ρ

⊗p
x [L̃ j p, L̃kp]

√
ρ

⊗p
x

∥∥
1

p(p + 1)

=
∥∥√ρ

⊗p
x [L̃ j p, L̃kp]

√
ρ

⊗p
x

∥∥
1

p
, (78)

i.e., (Cp+1 ) jk

p+1 � (Cp) jk

p , which implies ‖Cp+1

p+1 ‖F � ‖Cp

p ‖F .
A necessary condition for the saturation of the QCRB

under the p-local measurement is Cp

p = 0, which implies

‖
√

ρ
⊗p
x [L̃ j p,L̃kp]

√
ρ

⊗p
x ‖1

p = 0 for any j, k. This is equivalent

to ‖
√

ρ
⊗p
x [L j p,Lkp]

√
ρ

⊗p
x ‖1

p = 0 for any j, k in the original
parametrization, and can be seen as the partial commutative
condition under the p-local measurement.

At p = 1, the condition Cp

p = 0 is equivalent to the partial
commutative condition. It is natural to ask whether this condi-
tion recovers the weak commutative condition at p → ∞. In
the Appendix B we explicitly show that this condition indeed
reduces to the weak commutative condition when p → ∞.
Specifically we show that (regardless of the parametrization)

lim
p→∞

∥∥√ρ
⊗p
x [L̃ j p, L̃kp]

√
ρ

⊗p
x

∥∥
1

p
= |Tr(ρx[L̃ j, L̃k])|. (79)

When p → ∞ the partial commutative condition Cp

p = 0 is

then equivalent to the weak commutative condition F̃Im = 0,
where (F̃Im) jk = 1

2 Tr(ρx[L̃ j, L̃k]). This clarifies the connec-
tion between the partial commutative condition and the weak
commutative condition and solves an open question [23].
The connection also suggests that the partial commutative
condition under p-local measurements Cp

p = 0 is likely also
sufficient for the saturation of QCRB under p-local measure-
ments, although we do not have a proof.

Since ‖Cp

p ‖F is monotone, we have

‖C1‖F �
∥∥∥∥C2

2

∥∥∥∥
F

� · · · � lim
p→∞

∥∥∥∥Cp

p

∥∥∥∥
F

= ‖F̃Im‖F , (80)

where (C1) jk = 1
2‖√ρx[L̃ j, L̃k]

√
ρx‖1 and (F̃Im) jk =

1
2i Tr(ρx[L̃ j, L̃k]) with L̃ j and L̃k as the SLDs under the

reparametrization that F̃Q = I . All values of (Cp) jk

p are thus

between 1
2 |Tr(

√
ρx[L̃ j, L̃k]

√
ρx )| and 1

2‖√ρx[L̃ j, L̃k]
√

ρx‖1,
i.e., between the absolute value of the trace and the trace
norm of the same matrix 1

2

√
ρx[L̃ j, L̃k]

√
ρx.

When p → ∞, by substituting limp→∞ ‖Cp

p ‖F = ‖F̃Im‖F

into the bound

�p � n − 1

4(n − 1)

∥∥∥∥Cp

p

∥∥∥∥
2

F

, (81)
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we have

�∞ � n − 1

4(n − 1)
‖F̃Im‖2

F . (82)

Combined with the lower bound in Eq. (6) [30], which is

�∞ � n2

n + ‖F̃Im‖1
� n − ‖F̃Im‖1, (83)

we get

n − ‖F̃Im‖1 � �∞ � n − 1

4(n − 1)
‖F̃Im‖2

F , (84)

where F̃Im = F
− 1

2
Q FImF

− 1
2

Q . It can be easily seen that the QCRB
is saturable (in which case �∞ = n) if and only if F̃Im = 0,
which is just the weak commutative condition. This provides
an alternative way of showing the weak commutative condi-
tion is necessary and sufficient for the saturation of QCRB at
p → ∞.

F̃Im has been proposed as a measure of quantumness based
on the lower bound �∞ � n − ‖F̃Im‖1 [30]. The upper bound
obtained here adds another layer on the interpretation of F̃Im as
the quantumness when p → ∞. We note that if Cp

p = 0 is also
sufficient for the saturation of the QCRB under p-local mea-
surements, Cp

p can be used as a measure of the quantumness
under p-local measurements.

Similar to the case of pure states, we can also obtain the
other bounds as

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
�n − f (n)

∥∥∥∥∥∥
F

− 1
2

Q F̄ImpF
− 1

2
Q

p

∥∥∥∥∥∥
2

F

, (85)

where f (n) = max{ 1
4(n−1) ,

n−2
(n−1)2 ,

1
5 }, F̄Imp is the imaginary

part of F̄ =∑q F̄uq with F̄uq equal to either Fuq or F T
uq

, where
Fuq is a n × n matrix with the jkth entry given by

(
Fuq

)
jk = 〈uq|

√
ρ

⊗p
x L j pLkp

√
ρ

⊗p
x |uq〉, (86)

Lj p is the SLD of ρ
⊗p
x corresponding to the parameter x j , and

{|uq〉} are a set of vectors in H⊗p
d that satisfies

∑
q |uq〉〈uq| =

Id p with Id p denote the d p × d p identity matrix.

D. Simpler bounds of the incompatibility measures

The obtained tradeoff relation under the p-local measure-
ment in Eq. (74) needs to compute ‖

√
ρ

⊗p
x [L̃ j p, L̃kp]

√
ρ

⊗p
x ‖1,

which involves operators whose dimension increases expo-
nentially with p. Here we provide an alternative tradeoff
relation, which only uses operators on a single quantum state
thus easier to compute.

If we write
√

ρ
⊗p
x [L̃ j p, L̃kp]

√
ρ

⊗p
x = D( jk)

p + O( jk)
p with

D( jk)
p as the diagonal part and O( jk)

p as the off-diagonal part,
we have (see Appendix B)∥∥D( jk)

p

∥∥
1 �

∥∥D( jk)
p + O( jk)

p

∥∥
1 �

∥∥D( jk)
p

∥∥
1 + ∥∥O( jk)

p

∥∥
1. (87)

In the Appendix B we show that with the eigenvalue decom-
position ρx =∑m

q=1 λq|	q〉〈	q| with λq > 0,

∥∥D( jk)
p

∥∥
1 =

∑
v1,...,vp

(
p∏

r=1

λvr

)∣∣∣∣∣
p∑

r=1

〈
	vr

∣∣[L̃ j, L̃k]
∣∣	vr

〉∣∣∣∣∣, (88)

where v1, . . . , vp ∈ {1, . . . , m}, L̃ j =∑q(F
− 1

2
Q ) jqLq and

L̃k =∑q(F
− 1

2
Q )kqLq. As shown in the Appendix B,

‖O( jk)
p ‖1 ≈ O(

√
p), the difference between ‖D( jk)

p ‖1

p and

‖
√

ρ
⊗p
x [L̃ j p,L̃kp]

√
ρ

⊗p
x ‖1

p is then within the order of 1√
p , i.e.,

∥∥D( jk)
p

∥∥
1

p
�
∥∥√ρ

⊗p
x [L̃ j p, L̃kp]

√
ρ

⊗p
x

∥∥
1

p

�
∥∥D( jk)

p

∥∥
1

p
+ O

(
1√
p

)
. (89)

Here ‖D( jk)
p ‖1 is quantitatively equivalent to the expected

value of |∑p
r=1〈	vr |[L̃ j, L̃k]|	vr 〉| with each eigenvector

|	vr 〉 selected independently with probability λvr , i.e.,

∥∥D( jk)
p

∥∥
1 = E

(∣∣∣∣∣
p∑

r=1

〈
	vr

∣∣[L̃ j, L̃k]
∣∣	vr

〉∣∣∣∣∣
)

, (90)

where E (·) denotes the expectation, each |	vr 〉 is randomly
and independently chosen from the eigenvectors of ρx with a
probability of the corresponding eigenvalue λvr .

By replacing ‖
√

ρ
⊗p
x [L̃ j p, L̃kp]

√
ρ

⊗p
x ‖1 with ‖D( jk)

p ‖1, we
then obtain an alternative bound

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� n − 1

4(n − 1)

∥∥∥∥Tp

p

∥∥∥∥
2

F

, (91)

with

(Tp) jk = 1

2
E

(∣∣∣∣∣
p∑

r=1

〈
	vr

∣∣[L̃ j, L̃k]
∣∣	vr

〉∣∣∣∣∣
)

. (92)

Here Tp is also monotonically decreasing with p as

‖T1‖F �
∥∥∥T2

2

∥∥∥
F
� · · · � lim

p→∞

∥∥∥∥Tp

p

∥∥∥∥
F

= ‖F̃Im‖F , (93)

where (F̃Im) jk = 1
2 |Tr(ρx[L̃ j, L̃k])|.

We note that this bound can be equivalently obtained by
choosing the set of {|uq〉} in Eq. (49) as the eigenvectors of ρx

instead of the eigenvectors of
√

ρx[L̃ j, L̃k]
√

ρx.

V. INCOMPATIBILITY MEASURES WITH RLDs

The approach can be used to obtain various other in-
compatibility measures with different operators. Here we
demonstrate it with the right logarithmic operators (RLD)
[1,61].

The quantum Cramer-Rao bound in terms of the RLD
quantum Fisher information is given by

Cov(x̂) � 1

ν
(F RLD)−1, (94)
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where (F RLD) jk = Tr(ρxLR
j LR†

k ), LR
j (LR

k ) is the RLD asso-
ciated with the parameter x j (xk), which can be obtained
from the equation ∂x j ρx = ρxLR

j [1,18,61]. Different from the
SLD quantum Fisher information matrix, the RLD quantum
Fisher information matrix is in general a complex matrix.
If we decompose the inverse of the RLD quantum Fisher
information matrix into the real and imaginary parts as
(F RLD)−1 = (F RLD)−1

Re + i(F RLD)−1
Im , Eq. (94) then leads to

the standard RLD lower bound on the weighted covariance
matrix as

ν Tr[W Cov(x̂)]

� Tr
[
W (F RLD)−1

Re

]+ ∥∥√W (F RLD)−1
Im

√
W
∥∥

1. (95)

For single-parameter estimation the standard RLD bound
is always less tighter than the SLD bound. For multiparameter
quantum estimation, however, the RLD bound can be tighter
than the SLD bound [36,50,61].

We can obtain an upper bound on �p from the stan-
dard RLD bound. As Cov−1(x̂) � νF RLD, by writing F RLD =
F RLD

Re + iF RLD
Im as the real and imaginary parts, we have

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� Tr

[
F−1

Q F RLD
Re

]− ∥∥F
− 1

2
Q F RLD

Im F
− 1

2
Q

∥∥
1.

(96)
This bound is independent of p since the RLD bound holds
under any measurements.

We now show how the standard RLD bound can be
improved in a similar way. By choosing the operators as
(X1, . . . , Xn, LR†

1 , . . . , LR†
n ), we have

Su = (X1
√

ρx|u〉 . . . Xn
√

ρx|u〉 LR†
1

√
ρx|u〉 . . . LR†

n
√

ρx|u〉)†(
X1

√
ρ|u〉 . . . Xn

√
ρ|u〉 LR†

1
√

ρ|u〉 . . . LR†
n

√
ρ|u〉)

=
(

Au Bu

B†
u Fu

)
� 0, (97)

with (Au) jk = 〈u|√ρxXjXk
√

ρx|u〉, (Bu) jk =
〈u|√ρxXjL

R†
k

√
ρx|u〉, (Fu) jk = 〈u|√ρxLR

j LR†
k

√
ρx|u〉.

Similarly, if we choose a set of {|uq〉} with
∑

q |uq〉〈uq| =
I , we can get S̄ =∑q S̄uq with S̄uq ∈ {Suq , ST

uq
}. The stan-

dard RLD bound corresponds to choosing S̄uq = Suq for all

q. In this case S̄ =∑q Suq = ( A B
B† F RLD) � 0, where (A) jk =

Tr(ρxXjXk ), (B) jk = Tr(ρxXjL
R†
k ), (F RLD) jk = Tr(ρxLR

j LR†
k ).

From the local unbiased condition,

Tr
(
ρxLR

j X̂k
) = δk

j , (98)

we can get

(B) jk = Tr
(
ρxXjL

R†
k

)
= Tr

(
ρxLR

k Xj
)∗

= δ
j
k , (99)

thus, in this case B = I . The standard RLD bound can then be
obtained via the Schur’s complement as

Cov(x̂) � A � B(F RLD)−1B† = (F RLD)−1. (100)

If it is repeated with ν times, we then obtain the standard RLD
bound

Cov(x̂) � 1

ν
(F RLD)−1, (101)

which then leads to the upper bound on �p as in Eq. (96). For
any p-local measurements, we can replace ρx with ρ

⊗p
x and

repeat the measurement ν/p times, which leads to the same
tradeoff relation as in Eq. (96). This is consistent with the fact
the standard RLD bound holds for any measurements.

The standard RLD bound can be improved by making
proper choices on {|uq〉} and {S̄u j }. Here we make a partic-
ular choice as an illustration. Again, we first assume FQ =
I and for a fixed pair of indices j, k, choose a complete
basis {|u1〉, . . . , |ud〉}, as the orthonormal eigenvectors of√

ρx(LR
j LR†

k − LR
k LR†

j )
√

ρx. For any |uq〉, the imaginary part

of (Fuq ) jk is 1
2i 〈uq|√ρx(LR

j LR†
k − LR

k LR†
j )

√
ρx|uq〉, which we

denote as t q
jk . We then let

S̄uq :=
{Suq when t q

jk � 0,

ST
uq

when t q
jk < 0.

(102)

In this case we get

S̄ =
∑

q

S̄uq =
(

Ā B̄
B̄† F̄RLD

)
, (103)

where B̄ = I + iB̄Im, F̄RLD =∑q F̄uq with F̄uq equals to either
Fuq or F T

uq
according to the choices in Eq. (102) [which makes

the imaginary part of (F̄uq ) jk always positive]. The real part
of F̄RLD remains the same as F RLD

Re , the imaginary part of the
jkth entry of F̄RLD is(

F̄RLD
Im

)
jk = 1

2

∥∥√ρx
(
LR

j LR†
k − LR

k LR†
j

)√
ρx

∥∥
1. (104)

By following the same procedure, we can obtain the trade-
off relation under the 1-local measurement (under the
parametrization such that FQ = I) as

Tr[Cov−1(x̂)] � Tr
[
F̄RLD

Re

]− 1

4(n − 1)

∥∥CRLD
1

∥∥2

F
, (105)

where (CRLD
1 ) jk= min{ 1

2‖√ρx(LR
j LR†

k − LR
k LR†

j )
√

ρx‖1, 2}
(see Appendix E). If we repeat the 1-local measurement
on ν copies of the state, the tradeoff relation under 1-local
measurements, with the parametrization such that FQ = I , is
then

1

ν
Tr[Cov−1(x̂)] � Tr

[
F RLD

Re

]− 1

4(n − 1)

∥∥CRLD
1

∥∥2

F . (106)

When FQ �= I initially, we can first make a reparametrization

with x̃ = F
− 1

2
Q x. The tradeoff relation in Eq. (106) can then be

expressed in the original parametrization as

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]

� Tr
[
F−1

Q F RLD
Re

]− 1

4(n − 1)

∥∥CRLD
1

∥∥2

F (107)

with the entries of CRLD
1 given by (CRLD

1 ) jk =
min{ 1

2‖√ρx(L̃R
j L̃R†

k − L̃R
k L̃R†

j )
√

ρx‖1, 2}, where L̃R
j =

062442-11



HONGZHEN CHEN, YU CHEN, AND HAIDONG YUAN PHYSICAL REVIEW A 105, 062442 (2022)

∑
q(F

− 1
2

Q ) jqLR
q and L̃R

k =∑q(F
− 1

2
Q )kqLR

q (see Appendix E
for detail).

For p-local measurements, we can similarly get

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]

� Tr
[
F−1

Q F RLD
Re

]− 1

4(n − 1)

∥∥∥∥CRLD
p

p

∥∥∥∥
2

F

, (108)

where (CRLD
p ) jk = min{ 1

2‖
√

ρ
⊗p
x (L̃R

j pL̃R†
kp − L̃R

kpL̃R†
j p )
√

ρ
⊗p
x ‖1,

2p}.

VI. EXAMPLES

A. Example 1

Consider a state ρx = 1
2 (I + δσ3 + x1σ1 + x2σ2 + x3σ3),

where the true values of the parameters x1, x2, x3 are all
0 and |δ| < 1. The eigenvectors of ρx are |0〉 and |1〉
with ρx|0〉 = 1

2 (1 + δ)|0〉, ρx|1〉 = 1
2 (1 − δ)|1〉. The SLD

operators corresponding to the parameters can be easily
obtained as

L1 =
(

0 1
1 0

)
, L2 =

(
0 −i
i 0

)
, L3 =

( 1
1+δ

0
0 −1

1−δ

)
,

(109)

from which we can get the QFIM

FQ =
⎛
⎝1 0 0

0 1 0
0 0 1

1−δ2

⎞
⎠. (110)

The SLD under the reparametrization x̃ = F
1
2

Q x are
given by

L̃1 =
(

0 1
1 0

)
,

L̃2 =
(

0 −i
i 0

)
, (111)

L̃3 =
⎛
⎝
√

1−δ
1+δ

0

0 −
√

1+δ
1−δ

⎞
⎠.

From (C1) jk = 1
2‖√ρx[L̃ j, L̃k]

√
ρx‖1 we have

C1 =
⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠, (112)

which gives the tradeoff relation under the 1-local measure-
ment as

1

ν
Tr
[
F−1

Q Cov(x̂)−1] � n − 1

4(n − 1)
‖C1‖2

F = 9

4
. (113)

with

(T1) jk = 1

2

{
1 + δ

2
|〈0|[L̃ j, L̃k]|0〉| + 1 − δ

2
|〈1|[L̃ j, L̃k]|1〉|

}
,

(114)

we can obtain the bound with T1 as

1

ν
Tr
[
F−1

Q Cov(x̂)−1] � n − 1

4(n − 1)
‖T1‖2

F = 11

4
. (115)

If we choose a set of {|uq〉} as |u0〉 = (1
0), |u1〉 =

(0
1), which satisfies |u0〉〈u0| + |u1〉〈u1| = I , from (Fuq ) jk =

〈uq|√ρxL̃ j L̃k
√

ρx|uq〉 we can obtain

Fu0 = 1

2

⎛
⎝ 1 + δ i(1 + δ) 0

−i(1 + δ) 1 + δ 0
0 0 1 − δ

⎞
⎠,

Fu1 = 1

2

⎛
⎝ 1 − δ −i(1 − δ) 0

i(1 − δ) 1 − δ 0
0 0 1 + δ

⎞
⎠. (116)

We can choose F̄ = Fu0 + F T
u1

whose imaginary part is

F̄Im =
⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠, (117)

the tradeoff relation in Eq. (85) then gives

1

ν
Tr
[
F−1

Q Cov(x̂)−1] � n − (n − 2)

(n − 1)2
‖F̄Im‖2

F = 5

2
. (118)

For 2-local measurement, using (C2) jk =
1
2‖√ρ⊗2

x [L̃ j2, L̃k2]
√

ρ⊗2
x ‖1 with L̃ j2 = L̃ j ⊗ I + I ⊗ L̃ j ,

we can obtain

C2 =
⎛
⎝ 0 1 + δ2

√
1 + δ2

1 + δ2 0
√

1 + δ2√
1 + δ2

√
1 + δ2 0

⎞
⎠, (119)

which gives the tradeoff relation

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]
� n − 1

4(n − 1)

∥∥∥C2

2

∥∥∥2

F

= 45

16
− 1

4
δ2 − 1

16
δ4. (120)

From

(T2) jk =1

2

(
1 + δ

2

)2

|〈0|[L̃ j, L̃k]|0〉 + 〈0|[L̃ j, L̃k]|0〉|

+ 1 + δ

2

1 − δ

2
|〈0|[L̃ j, L̃k]|0〉 + 〈1|[L̃ j, L̃k]|1〉|

+ 1

2

(
1 − δ

2

)2

|〈1|[L̃ j, L̃k]|1〉 + 〈1|[L̃ j, L̃k]|1〉|,
(121)

we have

T2 =
⎛
⎝ 0 1 + δ2 0

1 + δ2 0 0
0 0 0

⎞
⎠, (122)

which gives the tradeoff relation with T2 as

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]
� n − 1

4(n − 1)

∥∥∥∥T2

2

∥∥∥∥
2

F

= 47

16
− δ2

8
− δ4

16
. (123)
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If we choose a set of {|uq〉} in the two-qubit space as |u0〉 =
|00〉, |u1〉 = |01〉, |u2〉 = |10〉, |u3〉 = |11〉, we can obtain

Fu0 = 1

2

⎛
⎝ (1 + δ)2 i(1 + δ)2 0

−i(1 + δ)2 (1 + δ)2 0
0 0 2(1 − δ2)

⎞
⎠,

Fu1 = 1

2

⎛
⎝1 − δ2 0 0

0 1 − δ2 0
0 0 2δ2

⎞
⎠,

Fu2 = 1

2

⎛
⎝1 − δ2 0 0

0 1 − δ2 0
0 0 2δ2

⎞
⎠,

Fu3 = 1

2

⎛
⎝ (1 − δ)2 −i(1 − δ)2 0

i(1 − δ)2 (1 − δ)2 0
0 0 2(1 − δ2)

⎞
⎠, (124)

where the entries of Fuq are obtained as (Fuq ) jk =
〈uq|
√

ρ⊗2
x L̃ j2L̃k2

√
ρ⊗2

x |uq〉. Let F̄ = Fu0 + Fu1 + Fu2 + F T
u3

,
which has the imaginary part as

F̄Im2 =
⎛
⎝ 0 1 + δ2 0

−(1 + δ2) 0 0
0 0 0

⎞
⎠. (125)

This gives the tradeoff relation

1

ν
Tr
[
F−1

Q Cov(x̂)−1] � n − (n − 2)

(n − 1)2

∥∥∥∥ F̄Im2

2

∥∥∥∥
2

F

= 3 − 1

8
(1 + δ2)2. (126)

When δ = 0, i.e., ρx = 1
2 (I + x1σ1 + x2σ2 + x3σ3), the

tradeoff relations can be analytically calculated under general
p-local measurement. In this case the SLD operators under
the reparametrization are given by L̃1 = σ1, L̃2 = σ2, L̃3 = σ3,
thus,

(Cp)12 = 1

2

∥∥√ρ
⊗p
x [L̃1p, L̃2p]

√
ρ

⊗p
x

∥∥
1

= 1

2

∥∥√ρ
⊗p
x [σ1p, σ2p]

√
ρ

⊗p
x

∥∥
1

= 1

2p
‖σ3p‖1, (127)

where σl p =∑p
r=1 σ

(r)
l for l ∈ {1, 2, 3}. As the eigenvalues of

σl p are −p + 2s with multiplicity
(p

s

)
, where s = 0, 1, . . . , p,

thus,

‖σ3p‖1 =
p∑

s=0

(
p

s

)
| − p + 2s|

= 2

� p
2 �∑

s=0

(
p

s

)
(p − 2s) =

{
2p
(p−1

p−1
2

)
, if p is odd

p
( p

p
2

)
, if p is even.

(128)

Due to the symmetry, (Cp) jk takes the same value for all
j �= k ∈ {1, 2, 3}. The tradeoff relation under the p-local mea-

FIG. 1. Upper bounds on �p obtained with Cp and Tp, together
with the QCRB and Holevo bounds at the case δ = 0.

surement is then given by

�p = 1

ν
Tr
[
F−1

Q Cov(x̂)−1
]
� n − 1

4(n − 1)

∥∥∥∥Cp

p

∥∥∥∥
2

F

= 3 − 3

4

(Np

p

)2

, (129)

where Np = 1
2p ‖σ3p‖1.

For the bound with Tp, we have

(Tp)12 = 1

2

p∑
s=0

(
p

s

)(
1 + δ

2

)s(1 − δ

2

)p−s

|2s − 2(p − s)|

= 1

2p

p∑
s=0

(
p

s

)
(1 + δ)s(1 − δ)p−s|2s − p|, (130)

and (Tp)13 = (Tp)23 = 0, thus,

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� n − 1

4(n − 1)

∥∥∥∥Tp

p

∥∥∥∥
2

F

= 3 − 1

4p2
(Tp)2

12. (131)

In Fig. 1 we plot the bounds as a function of p in the case of
δ = 0. Note that in this case the weak commutative condition
holds, the Holevo bound equals to the QCRB, which is achiev-
able when p → ∞. For any finite p, however, the bounds are
strictly less than 3, thus any collective measurement on finite
copies can not saturate the Holevo bound. It can also be seen
that the difference between the bounds obtained from Cp and
Tp is large for small p, but the difference decreases with p.

We also plot the bounds for the state ρx = 1
2 (I + δσ3 +

x1σ1 + x2σ2 + x3σ3) with general δ in Fig. 2. The complexity
of calculating the bound with Cp, which we compute up to
p = 10, increases exponentially with p. As a comparison, the
bound with Tp is much easier to compute, which we compute
up to p = 100. Since the difference between these two bounds
decreases with p, a good strategy is to use the bound with Cp

for small p and use the bound with Tp for large p. We also plot
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FIG. 2. Comparison of different bounds of �p for the estimation
of ρx = 1

2 (I + δσ3 + x1σ1 + x2σ2 + x3σ3) at x1 = x2 = x3 = 0.

the bound with the RLD for p = 2, it can be seen that the RLD
bound can be either tighter or less tight than the bound with
Cp. We can combine these bounds and choose the minimal of
them to get a tighter bound.

B. Example 2

We consider another example with a three-dimensional
state ρx = 1

3 I +∑ j x jG j , where Gj = 1
2� j , where {� j}8

j=1
are the Gell-Mann matrices

�1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, �2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠,

�3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, �4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

�5 =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, �6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

�7 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, �8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠, (132)

which form a basis for 3 × 3 Hermitian matrices. When
the true values of the parameters are all 0, the SLDs can
be obtained as Lj = 3Gj , and FQ = 3

2 I . The SLDs after the
reparametrization which makes F̃Q = I are given by L̃ j =√

2
3 Lj = √

6Gj . Since

(C1) jk = 1
2‖√ρx[L̃ j, L̃k]

√
ρx‖1 = ‖[Gj, Gk]‖1, (133)

we have

C1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1
2

1
2

1
2

1
2 0

1 0 1 1
2

1
2

1
2

1
2 0

1 1 0 1
2

1
2

1
2

1
2 0

1
2

1
2

1
2 0 1 1

2
1
2

√
3

2

1
2

1
2

1
2 1 0 1

2
1
2

√
3

2

1
2

1
2

1
2

1
2

1
2 0 1

√
3

2

1
2

1
2

1
2

1
2

1
2 1 0

√
3

2

0 0 0
√

3
2

√
3

2

√
3

2

√
3

2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (134)

This gives the tradeoff relation under the 1-local measurement
as

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� n − 1

4(n − 1)
‖C1‖2

F

= 50

7
≈ 7.14. (135)

For p-local measurement, we can similarly obtain

(Cp) jk = 1
2

∥∥√ρ
⊗p
x [L̃ j p, L̃kp]

√
ρ

⊗p
x

∥∥
1 = 1

3p−1
‖[Gj p, Gkp]‖1,

(136)
where [Gj p, Gkp] =∑p

r=1[G(r)
j , G(r)

k ]. Since the eigenval-

ues of [Gj, Gk] are {−λ, 0, λ}, where λ = 1
2 (C1) jk , the

eigenvalues of [Gj p, Gkp] are given by λs with mul-
tiplicity

(p
s

)
2, for s = −p,−p + 1, . . . , p, where

(p
s

)
2 =∑p

i=0(−1)i
(p

i

)(2p−2i
p−s−i

)
is the trinomial coefficient, which can

be obtained as the ( j + p)th coefficient of the polyno-
mial (1 + x + x2)p (see Appendix F for details). We thus
have

‖[Gj p, Gkp]‖1 =
p∑

s=−p

|λs|
(

p

s

)
2

= 2λ

p∑
s=0

s

(
p

s

)
2

= (C1) jk

p∑
s=0

s

(
p

s

)
2

, (137)

where we have used the fact that (p
s)2 = ( p−s)2. Denote Np =∑p

s=0 s(p
s)2, we then have

(Cp) jk = 1

3p−1
‖[Gj p, Gkp]‖1 = (C1) jk

Np

3p−1
, (138)

which gives the Frobenius norm of Cp as

‖Cp‖F =
√∑

jk

(Cp)2
jk =

√√√√∑
jk

(
(C1) jk

1

3p−1
Np

)2

= 1

3p−1
Np

√∑
jk

[(C1) jk]2 = 1

3p−1
Np‖C1‖F . (139)
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The tradeoff relation under the p-local measurement is then
given by

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� n − 1

4(n − 1)

∥∥∥∥Cp

p

∥∥∥∥
2

F

= n − 1

4(n − 1)
‖C1‖2

F

(
1

p3p−1
Np

)2

= 8 − 6

7

(
1

p3p−1
Np

)2

. (140)

Here 1
p3p−1 Np monotonically decreases with p and it is only

equal to 0 when p → ∞. The Holevo bound, which equals to
the QCRB in this case since the weak commutative condition
holds, can thus only be achieved with collective measurement
on genuinely infinite number of quantum states in this case.

If there are only three parameters, for example, {x1, x2, x5},
the associated matrices are given by the 3 × 3 submatri-
ces of the original ones. Under the 1-local measurement we
have

C1 =

⎛
⎜⎝0 1 1

2

1 0 1
2

1
2

1
2 0

⎞
⎟⎠, (141)

which gives the tradeoff relation

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]
� n − 1

4(n − 1)
‖C1‖2

F

= 3 − 3

8
= 2.625. (142)

Under the p-local measurement, we have

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]
� n − 1

4(n − 1)

∥∥∥∥Cp

p

∥∥∥∥
2

F

= n − 1

4(n − 1)
‖C1‖2

F

(
1

p3p−1
Np

)2

= 3 − 3

8

(
1

p3p−1
Np

)2

. (143)

For p = 2, this gives

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]
� n − 1

4(n − 1)

∥∥∥C2

2

∥∥∥2

F

= 3 − 3

8
× 1

4
× 16

9

= 17

6
≈ 2.83. (144)

The bound with Tp can be similarly calculated as
(Tp) jk = 1

2

∑p
s=0

∑p−s
r=0

(p
s

)(p−s
r

)
( 1+3δ

3 )s( 1−3δ
3 )r ( 1

3 )p−s−r |s×〈0|
[L̃ j, L̃k]|0〉 + r × 〈1|[L̃ j, L̃k]|1〉 + (p − s − r) × 〈2|[L̃ j, L̃k]
|2〉|. For δ = 0, the equation can be simplified as

(Tp)12 = 1

2

(
1

3

)p p∑
s=0

p−s∑
r=0

(
p

s

)(
p − s

r

)
|3s − 3r| (145)

FIG. 3. Precision bounds �p for p-local measurements and the
Holevo bound when n = 3.

and (Tp)13 = 0, (Tp)23 = 0. This then gives

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� n − 1

4(n − 1)

∥∥∥∥Tp

p

∥∥∥∥
2

F

= 3 − 1

4p2
(Tp)2

12. (146)

We plot the bounds for n = 3 as a typical case in Fig. 3. It can
be seen that the Holevo bound, which equals to the QCRB
as the weak commutative condition holds, is only achievable
when p → ∞. For any finite p, the bounds are strictly less
than n.

If there are only two parameters, the associated matrices
are then given by the 2 × 2 submatrices of the original ones.
For example, suppose the two parameters are {x1, x2}, we then
have

C1 =
(

0 1
1 0

)
(147)

and the tradeoff relation under the 1-local measurement is then
given by

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]
� n − 1

4(n − 1)
‖C1‖2

F = 3

2
; (148)

in this case it is tighter than the Gill-Massar bound.
Under general p-local measurement, we have

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]
� n − 1

4(n − 1)

∥∥∥∥Cp

p

∥∥∥∥
2

F

= n − 1

4(n − 1)
‖C1‖2

F

(
1

p3p−1
Np

)2

= 2 − 1

2

(
1

p3p−1
Np

)2

. (149)

For p = 2, we have

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]
� 16

9
≈ 1.78, (150)
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FIG. 4. Comparison of different bounds of �p for the estimation
of ρx = 1

3 I + δG3 + x1G1 + x2G2 + x5G5 at x1 = x2 = x5 = 0.

and for p = 3,

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]
� 299

162
≈ 1.85. (151)

Similar as the previous example, we also consider the
estimation of the state ρx = 1

3 I + δG3 + x1G1 + x2G2 + x5G5

with general δ and plot the precision bounds in Fig. 4, where
we plotted the bounds with Cp up to p = 6 and the bounds
with Tp up to p = 100. We also plotted the bounds with RLDs
and F̄Im for p = 2 (see Appendix F for detailed calculations),
as it can be seen the bound given by 1

ν
Tr[F−1

Q Cov(x̂)−1] �
n − (n−2)

(n−1)2 ‖ F̄Im2
2 ‖2

F is tighter than the bounds given by C2 and
T2 in this case.

VII. SUMMARY

The presented framework provided a versatile tool to ob-
tain bounds on the precision limit in multiparameter quantum
estimation under general p-local measurements, which sig-
nificantly increased our knowledge on the incompatibility in
multiparameter quantum estimation. The relation between the
partial commutative condition and the weak commutative con-
dition is also clarified. Future studies include improving the
bounds by exploring different choices of {|uq〉} and operators
in S̄, clarifying whether the partial commutative condition
is sufficient for the saturation of the QCRB, and identifying
the ultimate precision under general p-local measurements.
The approach can also be used to strengthen the uncertainty
relations for multiple observables, which is another interesting
direction to pursue.
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APPENDIX A: TRADEOFF RELATIONS

We derive the tradeoff relation from

S =
(

A B
B† F

)
� 0, (A1)

where A, B, F are n × n matrices with Cov(x̂) � A, B = I +
iBIm, and F = FQ + iFIm. We note that the derivation below
works regardless whether S is obtained from pure states or
mixed states.

Since Cov(x̂) � A, we have(
Cov(x̂) B

B† F

)
=
(

Cov(x̂) − A 0
0 0

)
+
(

A B
B† F

)
� 0.

(A2)

This implies that F − B†Cov−1(x̂)B � 0. Since F = FQ +
iFIm, B = I + iBIm, we thus have

FQ + iFIm − [Cov−1(x̂) + BT
ImCov−1(x̂)BIm

+i
(
BT

ImCov−1(x̂) − Cov−1(x̂)BIm
)]

� 0, (A3)

which implies the real part is positive semidefinite, i.e.,

FQ − Cov−1(x̂) − BT
ImCov−1(x̂)BIm � 0. (A4)

This can be written as FQ − Cov−1(x̂) � BT
ImCov−1(x̂)BIm �

0, which is stronger than the quantum Cramer-Rao bound
FQ − Cov−1(x̂) � 0, typically written as Cov(x̂) � F−1

Q . To
saturate the bound, i.e., Cov(x̂) = F−1

Q , we need to have
BT

ImCov−1(x̂)BIm = 0. When the covariance matrix is full
rank, which is always the case when FQ is invertible, this
requires BIm = 0, Eq. (A3) then becomes

FQ + iFIm − Cov−1(x̂) � 0. (A5)

The saturation of the quantum Cramer-Rao bound then
requires iFIm � 0. Since FIm is antisymmetric and its eigen-
values are in the form of ±iβ with β ∈ R, iFIm � 0 is only
possible when all the eigenvalues are zero, i.e., FIm = 0.

When FIm �= 0, the QCRB is not saturable. Denote FC =
Cov−1(x̂), and we write Eq. (A3) as

FQ − FC − BT
ImFCBIm + i

(
FIm + BT

ImFC − FCBIm
)
� 0. (A6)

By multiplying F
− 1

2
Q from both the left and the right, we get

I − F
− 1

2
Q FCF

− 1
2

Q − F
− 1

2
Q BT

ImFCBImF
− 1

2
Q

+ i
(
F

− 1
2

Q FImF
− 1

2
Q + F

− 1
2

Q BT
ImFCF

− 1
2

Q

− F
− 1

2
Q FCBImF

− 1
2

Q

)
� 0. (A7)

Denote F̃C = F
− 1

2
Q FCF

− 1
2

Q , B̃Im = F
1
2

Q BImF
− 1

2
Q , F̃Im =

F
− 1

2
Q FImF

− 1
2

Q , we can write the inequality as

I − F̃C − B̃T
ImF̃CB̃Im + i

(
F̃Im + B̃T

ImF̃C − F̃CB̃Im
)
� 0. (A8)
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Since FC � FQ, we have F̃C � I , thus F̃C � F̃ 2
C and

B̃T
ImF̃CB̃Im � B̃T

ImF̃ 2
C B̃Im. We then have

I − F̃C − B̃T
ImF̃ 2

C B̃Im + i
(
F̃Im + B̃T

ImF̃C − F̃CB̃Im
)
� 0. (A9)

Now denote F̃CB̃Im as D:

I − F̃C − DT D + i(F̃Im + DT − D) � 0. (A10)

Since any 2 × 2 principal submatrix of a positive-semidefinite
matrix is also positive semidefinite,(

1 − (F̃C ) j j − (DT D) j j −(F̃C ) jk − (DT D) jk

−(F̃C )k j − (DT D)k j 1 − (F̃C )kk − (DT D)kk

)

+ i

(
0 (F̃Im) jk + Dk j − Djk

−(F̃Im) jk − Dk j + Djk 0

)
(A11)

is then positive semidefinite. Note that F̃C and DT D are sym-
metric and the determination of a positive-semidefinite matrix
is non-negative, we thus have

[1 − (F̃C ) j j − (DT D) j j][1 − (F̃C )kk − (DT D)kk]

� [(F̃C ) jk + (DT D) jk]2 + [(F̃Im) jk + Dk j − Djk]2, (A12)

from which we can get

[1 − (F̃C ) j j − (DT D) j j] + [1 − (F̃C )kk − (DT D)kk]

� 2
√

[1 − (F̃C ) j j − (DT D) j j][1 − (F̃C )kk − (DT D)kk]

� 2
√

[(F̃C ) jk + (DT D) jk]2 + [(F̃Im) jk + Dk j − Djk]2

� 2|(F̃Im) jk + Dk j − Djk|, (A13)

i.e.,

1 − (F̃C ) j j + 1 − (F̃C )kk

� 2|(F̃Im) jk + Dk j − Djk| + (DT D) j j + (DT D)kk . (A14)

As (DT D) j j =∑p D2
p j � D2

k j and (DT D)kk =∑p D2
pk �

D2
jk , we have

(DT D) j j + (DT D)kk

=
∑

p

(
D2

p j + D2
pk

)
� D2

k j + D2
jk

= 1

2
(Dk j − Djk )2 + 1

2
(Dk j + Djk )2, (A15)

and from I + iF̃Im = F
− 1

2
Q FF

− 1
2

Q � 0, we have |(F̃Im) jk| � 1.
Thus,

1 − (F̃C ) j j + 1 − (F̃C )kk

� 2|(F̃Im) jk + Dk j − Djk| + (DT D) j j + (DT D)kk

� 2|(F̃Im) jk + Dk j − Djk| + 1
2 (Dk j − Djk )2

� 1
2 |(F̃Im) jk|2, (A16)

where the last inequality we used the fact that 2|y + x| +
1
2 x2 � 1

2 y2 when |y| � 1 since

2|y + x| + 1
2 x2 = 2|y + x| + 1

2 (y + x − y)2

= 2|y + x| + 1
2 (y + x)2 − y(x + y) + 1

2 y2

� 2|y + x| − |y(x + y)| + 1
2 y2

= (2 − |y|)|x + y| + 1
2 y2

� 1
2 y2. (A17)

This provides a tradeoff relation between (F̃C ) j j and (F̃C )kk .
When FIm = 0, the quantum Cramér-Rao bound is saturable,
FC can reach FQ, in this case F̃C = I , (F̃C ) j j and (F̃C )kk can
reach the maximal value simultaneously, which is 1. When
(F̃Im) jk �= 0, (F̃C ) j j and (F̃C )kk can not simultaneously reach
1, Eq. (A16) puts a tradeoff between them.

By summing Eq. (A16) over different choice of j, k di-
rectly, we can get

2(n − 1)
∑

j

[1 − (F̃C ) j j]

� 1

2

∑
j,k, j �=k

|(F̃Im) jk|2 = 1

2
‖F̃Im‖2

F , (A18)

which gives

Tr(F̃C ) � n − 1

4(n − 1)
‖F̃Im‖2

F , (A19)

where ‖F̃Im‖2
F = Tr(F̃ T

ImF̃Im). This can be rewritten as

Tr
[
F−1

Q Cov−1(x̂)
]
� n − 1

4(n − 1)

∥∥F
− 1

2
Q FImF

− 1
2

Q

∥∥2

F

= n − 1

4(n − 1)
Tr
(
F−1

Q F T
ImF−1

Q FIm
)
.

(A20)

The same relation can be obtained by including the number of
copies of the state ν explicitly; essentially just replace FQ and
FIm with νFQ and νFIm. The tradeoff relation with ν copies of
the state is then

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� n − 1

4(n − 1)

∥∥F
− 1

2
Q FImF

− 1
2

Q

∥∥2

F .

(A21)
When the number of the parameters n � 3, the tradeoff can

be tightened by keeping all terms in (DT D) j j and (DT D)kk in
Eq. (A14) as ∑

j,k, j �=k

[1 − (F̃C ) j j + 1 − (F̃C )kk]

�
∑

j,k, j �=k

[2|(F̃Im) jk + Dk j − Djk|

+(DT D) j j + (DT D)kk], (A22)

where

(DT D) j j + (DT D)kk =
∑

p

(
D2

p j + D2
pk

)
, (A23)

which not only includes the correlations between the j, kth
entry, but also with other entries. By summing over all choice
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of j, k, we have

2(n − 1)
∑

j

[1 − (F̃C ) j j] �
∑

j,k, j �=k

2|(F̃Im) jk + Dk j − Djk| + 2(n − 1)
∑

j

(DT D) j j

=
∑

j,k, j �=k

2|(F̃Im) jk + Dk j − Djk| + 2(n − 1)
∑

j,k

D2
jk

�
∑

j,k, j �=k

{
2|(F̃Im) jk + Dk j − Djk| + (n − 1)

(
D2

jk + D2
k j

)}

=
∑

j,k, j �=k

{
2|(F̃Im) jk + Dk j − Djk| + n − 1

2
(Dk j − Djk )2 + n − 1

2
(Dk j + Djk )2

}

� 2(n − 2)

n − 1

∑
j,k, j �=k

|(F̃Im) jk|2

= 2(n − 2)

n − 1
‖F̃Im‖2

F , (A24)

where in the last inequality we used the fact that

2|y + x| + n − 1

2
x2 = 2|y + x| + n − 1

2
(y + x − y)2

= 2|y + x| + n − 1

2
(y + x)2 − (n − 1)y(x + y) + n − 1

2
y2

� n − 1

2
(y + x)2 + 2|y||y + x| − (n − 1)|y(x + y)| + n − 1

2
y2

= n − 1

2
(y + x)2 − (n − 3)|y||x + y| + n − 1

2
y2

= n − 1

2

(
|y + x| − n − 3

n − 1
|y|
)2

+ 2(n − 2)

n − 1
y2

� 2(n − 2)

n − 1
y2. (A25)

This then gives a tradeoff relation on F̃C as

Tr(F̃C ) � n − n − 2

(n − 1)2
‖F̃Im‖2

F . (A26)

With ν copies of the state, this can be equivalently written

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� n − n − 2

(n − 1)2

∥∥F
− 1

2
Q FImF

− 1
2

Q

∥∥2

F
.

(A27)
The bound can be further improved. From Eq. (A10),

I − F̃C − DT D + i(F̃Im + DT − D) � 0, (A28)

we have

I − F̃C − DT D � −i(F̃Im + DT − D), (A29)

from which we can obtain

Tr(I − F̃C − DT D) � ‖F̃Im + DT − D‖1. (A30)

Note that F̃Im + DT − D is skew symmetric with purely
imaginary eigenvalues, and the singular values are just the
amplitude of the eigenvalues as {|λ1|, . . . , |λn|}. Since

−i(F̃Im + DT − D) � I − F̃C − DT D � I, (A31)

we have |λ j | � 1, thus |λ j | � |λ j |2. As

‖F̃Im + DT − D‖1 =
n∑

j=1

|λ j | �
n∑

j=1

|λ j |2

= Tr[(F̃Im + DT − D)T (F̃Im + DT − D)]

=
∑

jk

[(F̃Im + DT − D) jk]2, (A32)

from Eq. (A30) we then have

Tr(I − F̃C ) � Tr(DT D) + ‖F̃Im + DT − D‖1

�
∑

k

(DT D)kk +
∑

jk

[(F̃Im + DT − D) jk]2

=
∑

jk

D2
jk + [(F̃Im) jk + Dk j − Djk]2

=
∑

jk

1

2

(
D2

jk + D2
k j

)+ [(F̃Im) jk + Dk j − Djk]2

�
∑

jk

1

4
(Djk − Dk j )

2 + [(F̃Im) jk + Dk j − Djk]2
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�
∑

jk

1

5
(F̃Im)2

jk

= 1

5
‖F̃Im‖2

F , (A33)

where in the last inequality we used the fact that

1
4 x2 + (y + x)2 = 5

4 x2 + 2xy + y2

= 5
4

(
x + 4

5 y
)2 + 1

5 y2

� 1
5 y2. (A34)

We thus have

Tr(F̃C ) � n − 1
5‖F̃Im‖2

F . (A35)

For ν copies of the state, this gives the tradeoff relation

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� n − 1

5

∥∥F
− 1

2
Q FImF

− 1
2

Q

∥∥2

F , (A36)

which is tighter than Eq. (A26) when n � 5.

APPENDIX B: CONNECTION BETWEEN THE PARTIAL
COMMUTATIVE CONDITION AND THE WEAK

COMMUTATIVE CONDITION

Here we show

lim
p→∞

∥∥√ρ
⊗p
x [Lj p, Lkp]

√
ρ

⊗p
x

∥∥
1

p
= |Tr(ρx[Lj, Lk])|. (B1)

We write the state in the eigenvalue decomposition as
ρx =∑m

q=1 λq|	q〉〈	q| with λq > 0 and
∑m

q=1 λq = 1. Then√
ρx =∑q

√
λq|	q〉〈	q|,

∥∥√ρ
⊗p
x [Lj p, Lkp]

√
ρ

⊗p
x

∥∥
1

=
∥∥∥∥∥
√

ρ
⊗p
x

p∑
r=1

[
L(r)

j , L(r)
k

]√
ρ

⊗p
x

∥∥∥∥∥
1

=
∥∥∥∥∥

p∑
r=1

ρ⊗(r−1)
x ⊗ (

√
ρx[Lj, Lk]

√
ρx ) ⊗ ρ⊗(p−r)

x

∥∥∥∥∥
1

, (B2)

where L(r)
j = I⊗(r−1) ⊗ Lj ⊗ I⊗(p−r). The support of∑p

r=1 ρ⊗(r−1)
x ⊗ (

√
ρx[Lj, Lk]

√
ρx ) ⊗ ρ

⊗(p−r)
x is in

the subspace spanned by {|	v1	v2 . . . 	vp〉}, with
|	v1〉, . . . , |	vp〉 ∈ {|	1〉, . . . , |	m〉}, where {|	1〉, . . . , |	m〉}
are the eigenvectors of ρx with nonzero eigenvalues. We can
focus on the support space and calculate the entries of∑p

r=1 ρ⊗(r−1)
x ⊗ √

ρx[Lj, Lk]
√

ρx ⊗ ρ
⊗(p−r)
x in the basis of

|	v1	v2 . . . 	vp〉 with v1, . . . , vp ∈ {1, . . . , m} and show that

when p → ∞, ‖
√

ρ
⊗p
x [L j p,Lkp]|

√
ρ

⊗p
x ‖1

p → |Tr(ρx[Lj, Lk])|.

The entries of
√

ρ
⊗p
x [Lj p, Lkp]|

√
ρ

⊗p
x are given by

〈	ṽ1 . . . 	ṽp |
p∑

r=1

ρ⊗(r−1)
x

⊗√
ρx[Lj, Lk]

√
ρx ⊗ ρ⊗(p−r)

x

∣∣	v1 . . . 	vp

〉
=

p∑
r=1

[〈
	ṽr

∣∣√ρx[Lj, Lk]
√

ρx

∣∣	vr

〉∏
q �=r

(
δ

vq

ṽq
λvq

)]
. (B3)

It is easy to see that when the indices {v1, v2 . . . , vp} and
{ṽ1, . . . , ṽp} differ at two or more entries, the corresponding
matrix entry equals to 0. When the two indices differ at only
one entry, for example, vr �= ṽr but vq = ṽq for all q �= r, the
corresponding matrix entry equals to〈

	ṽr

∣∣√ρx[Lj, Lk]
√

ρx

∣∣	vr

〉∏
q �=r

λṽq

=
〈
	ṽr

∣∣√ρx[Lj, Lk]
√

ρx

∣∣	vr

〉
λṽr

p∏
q=1

λṽq . (B4)

When the indices {v1, v2 . . . , vp} and {ṽ1, . . . , ṽp} are the

same, we get the diagonal entries of
√

ρ
⊗p
x [Lj p, Lkp]|

√
ρ

⊗p
x as

p∑
r=1

(〈
	vr

∣∣√ρx[Lj, Lk]
√

ρx

∣∣	vr

〉∏
q �=r

λvq

)

=
p∑

r=1

(〈
	vr

∣∣[Lj, Lk]
∣∣	vr

〉 p∏
q=1

λvq

)

=
(

p∏
q=1

λvq

)
p∑

r=1

〈
	vr

∣∣[Lj, Lk]
∣∣	vr

〉
. (B5)

Next, we write
√

ρ
⊗p
x [Lj p, Lkp]|

√
ρ

⊗p
x = D( jk)

p + O( jk)
p with

D( jk)
p as the diagonal part of the matrix and O( jk)

p as the off-
diagonal part of the matrix. We then use the inequality∥∥D( jk)

p

∥∥
1 �

∥∥D( jk)
p + O( jk)

p

∥∥
1 �

∥∥D( jk)
p

∥∥
1 + ∥∥O( jk)

p

∥∥
1 (B6)

to bound ‖
√

ρ
⊗p
x [Lj p, Lkp]|

√
ρ

⊗p
x ‖1, where the first inequality

comes from the fact that for any matrix M, ‖M‖1 �∑q |Mqq|,
and for diagonal matrix ‖D( jk)

p ‖1 =∑q |(D( jk)
p )qq|, the second

inequality is from the triangle inequality of the trace norm.
The singular values of the diagonal matrix, D( jk)

p , are
just the absolute value of the diagonal entries, which are
{(∏p

r=1 λvr )|∑p
r=1〈	vr |[Lj, Lk]|	vr 〉|}. These entries can be

interpreted as the absolute value of the summation of p
randomly chosen 〈	vr |[Lj, Lk]|	vr 〉 multiplied with the cor-
responding probabilities, where each term 〈	vr |[Lj, Lk]|	vr 〉
is selected with probability λvr . For a given diagonal entry
with a particular choice of p terms, |∑p

r=1〈	vr |[Lj, Lk]|	vr 〉|,
the associated probability is

∏p
r=1 λvr . ‖D( jk)

p ‖1, which
equals to the summation of the absolute value of all di-
agonal entries, then corresponds to the expected value
of |∑p

r=1〈	vr |[Lj, Lk]|	vr 〉| with each |	vr 〉 selected with
probability λvr . When p → ∞, by the law of large num-

bers,
∑p

r=1〈	vr |[L j ,Lk ]|	vr 〉
p converges to the expected value of
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〈	vr |[Lj, Lk]|	vr 〉, i.e., with probability one∑p
r=1

〈
	vr

∣∣[Lj, Lk]
∣∣	vr

〉
p

→ E
[〈
	vr

∣∣[Lj, Lk]
∣∣	vr

〉]

=
m∑

q=1

λq〈	q|[Lj, Lk]|	q〉

=
m∑

q=1

λqTr(|	q〉〈	q|[Lj, Lk])

= Tr(ρx[Lj, Lk]). (B7)

Thus, when p → ∞,

∥∥D( jk)
p

∥∥
1 = E

[∣∣∣∣∣
p∑

r=1

〈
	vr

∣∣[Lj, Lk]
∣∣	vr

〉∣∣∣∣∣
]

→ 1 ×
∣∣∣∣∣E
[

p∑
r=1

〈
	vr

∣∣[Lj, Lk]
∣∣	vr

〉]∣∣∣∣∣
= p|Tr(ρx[Lj, Lk])|. (B8)

For the off-diagonal part, note that for any matrix, we have
‖M‖1 �∑ j

√∑
k |Mjk|2, and∣∣∣∣∣

〈
	ṽr

∣∣√ρx[Lj, Lk]
√

ρx

∣∣	vr

〉
λṽr

p∏
q=1

λṽq

∣∣∣∣∣ � lmax
∏p

q=1 λṽq , (B9)

where lmax = maxṽr �=vr {| 〈	ṽr |
√

ρx[L j ,Lk ]
√

ρx|	vr 〉
λṽr

|}, we then have

∥∥O( jk)
p

∥∥
1 �

∑
ṽ1,...,ṽp

√√√√ p∑
r=1

∑
vr �=ṽr

l2
max

p∏
q=1

λ2
ṽq

=
∑

ṽ1,...,ṽp

√√√√p(m − 1)l2
max

p∏
q=1

λ2
ṽq

=
√

(m − 1)plmax

∑
ṽ1,...,ṽp

p∏
q=1

λṽq

=
√

(m − 1)plmax

p∏
q=1

⎛
⎝ m∑

ṽq=1

λṽq

⎞
⎠

=
√

(m − 1)plmax. (B10)

Thus, when p → ∞,∥∥D( jk)
p + O( jk)

p

∥∥
1

p
�
∥∥D( jk)

p

∥∥
1

p
= |Tr(ρx[Lj, Lk])|,

∥∥D( jk)
p + O( jk)

p

∥∥
1

p
�
∥∥D( jk)

p

∥∥
1 + ∥∥O( jk)

p

∥∥
1

p
� |Tr(ρx[Lj, Lk])|

+
√

(m − 1)lmax√
p

, (B11)

i.e.,

|Tr(ρx[Lj, Lk])| �
∥∥√ρ

⊗p
x [Lj p, Lkp]|

√
ρ

⊗p
x

∥∥
1

p

� |Tr(ρx[Lj, Lk])| +
√

(m − 1)lmax√
p

. (B12)

From which it is easy to see that limp→∞
‖
√

ρ
⊗p
x [L j p,Lkp]|

√
ρ

⊗p
x ‖1

p = |Tr(ρx[Lj, Lk])|. The condition

‖
√

ρ
⊗p
x [L j p,Lkp]|

√
ρ

⊗p
x ‖1

p = 0, then reduces to the weak
commutative condition Tr(ρx[Lj, Lk]) = 0, when p → ∞.

It can also be seen that ‖D( jk)
p ‖1

p provides a lower bound

on ‖
√

ρ
⊗p
x [L j p,Lkp]|

√
ρ

⊗p
x ‖1

p and the difference between them is

in the order of O( 1√
p ). We can thus use ‖D( jk)

p ‖1 to provide
an alternative tradeoff relation, which is less tight but easier
to compute. Under p-local measurements the tradeoff relation
can be written as

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� n − 1

4(n − 1)

∥∥∥∥Tp

p

∥∥∥∥
2

F

, (B13)

where

(Tp) jk = 1

2

∥∥D( jk)
p

∥∥
1

= 1

2

∑
v1,...,vp

(
p∏

r=1

λvr

)∣∣∣∣∣
p∑

r=1

〈
	vr

∣∣[L̃ j, L̃k]
∣∣	vr

〉∣∣∣∣∣, (B14)

where L̃ j =∑q(F
− 1

2
Q ) jqLq and L̃k =∑q(F

− 1
2

Q )kqLq. Com-
pared to Cp, Tp is expressed only with operators on a single
copy of the state. We note that Tp can be equivalently obtained
by choosing the set of {|u j〉} in Eq. (49) as the eigenvectors of
ρx, instead of the eigenvectors of

√
ρx[L̃ j, L̃k]

√
ρx.

APPENDIX C: BOUND ON THE TRACE NORM

For completeness, here we include a proof for the in-
equality

∑
j |Mj j | � ‖M‖1 �∑ j

√∑
k |Mjk|2, which is used

in the derivation that Cp

p = 0 reduces to the weak com-
mutative condition when p → ∞. We first show ‖M‖1 �∑

j

√∑
k |Mjk|2. From the singular value decomposition M =

U�V , we have

‖M‖1 = Tr(�) = Tr(U †MV †) = Tr(V †U †M ) = Tr(W M ),

(C1)

where W = V †U † is a unitary matrix. Note that

(W M ) j j =
√

|(W M ) j j |2 �
√∑

k

|(W M ) jk|2

= ‖(W M ) j‖2

= ‖W Mj‖2

= ‖Mj‖2

=
√∑

k

|Mjk|2, (C2)

where we used (. . . ) j to denote the jth column of a matrix
[thus (W M ) j is the jth column of W M which equals to W Mj ,
W multiples the jth column of M], and ‖v‖2 = √∑k |vk|2 as
the l2 norm for a vector. It is then straightforward to see

‖M‖1 = Tr(W M ) =
∑

j

(W M ) j j �
∑

j

√∑
k

|Mjk|2. (C3)
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Next, we show
∑

j |Mj j | � ‖M‖1. From the singular value
decomposition M = U�V , we have

Mj j =
∑

k

Ujk�kkVk j, (C4)

thus,

∑
j

|Mj j | =
∑

j

∣∣∣∣∣
∑

k

Ujk�kkVk j

∣∣∣∣∣
�
∑

j

∑
k

|Ujk�kkVk j |

=
∑

k

∑
j

�kk|UjkVk j |

�
∑

k

�kk

√√√√(∑
j

|Ujk|2
)(∑

j

|Vk j |2
)

=
∑

k

�kk

= ‖M‖1. (C5)

APPENDIX D: PROOF OF Covu � Au

For a mixed state ρx, with x = (x1, . . . , xn), given any
POVM, {Mα}, and any |u〉, we define Covu as a n × n matrix
with the jkth entry given by

(Covu) jk =
∑

α

[x̂ j (α) − x j][x̂k (α) − xk]〈u|√ρxMα

√
ρx|u〉,

(D1)
and Au as a n × n matrix with the jkth entry given by

(Au) jk = 〈u|√ρxX †
j Xk

√
ρx|u〉

= 1

2
〈u|√ρx{Xj, Xk}√ρx|u〉

+ i
1

2i
〈u|√ρx[Xj, Xk]

√
ρx|u〉, (D2)

where Xj =∑α[x̂ j (α) − x j]Mα is locally unbiased.
We then have Covu � Au since for any vector b =

(b1, . . . , bn)T ,

b†Covub − b†Aub

= 〈u|
∑

j,k

b∗
jbk

{∑
α

[x̂ j (α) − x j][x̂k (α) − xk]
√

ρxMα

√
ρx −

∑
β

[x̂ j (β ) − x j]
√

ρxMβ

∑
γ

[x̂k (γ ) − xk]Mγ ]
√

ρx

}
|u〉

= 〈u|
∑

j,k

{∑
α

[x̂ j (α) − x j]b
∗
j[x̂k (α) − xk]bk

√
ρxMα

√
ρx

−
∑

β

[x̂ j (β ) − x j]b
∗
j
√

ρxMβ

(∑
α

Mα

)∑
γ

[x̂k (γ ) − xk]bkMγ ]
√

ρx

}
|u〉

= 〈u|
∑

α

{[∑
j

[x̂ j (α) − x j]b
∗
j
√

ρx −
∑

j

∑
β

[x̂ j (β ) − x j]b
∗
j
√

ρxMβ

]
Mα

[∑
k

[xk (α) − xk]bk
√

ρx

−
∑

k

∑
γ

[x̂k (γ ) − xk]bkMγ

√
ρx

]}
|u〉

= 〈u|
∑

α

M†(b)MαM(b)]|u〉 � 0, (D3)

where M(b) =∑k[xk (α) − xk]bk
√

ρx −∑k

∑
γ [x̂k (γ ) −

xk]bkMγ
√

ρx.

APPENDIX E: TRADEOFF RELATIONS WITH RLDs

Let

Su =
(

Au Bu

B†
u Fu

)
� 0, (E1)

with (Au) jk = 〈u|√ρxXjXk
√

ρx|u〉, (Bu) jk = 〈u|√ρxXjL
R†
k√

ρx|u〉, (Fu) jk = 〈u|√ρxLR
j LR†

k
√

ρx|u〉, where LR
j is the RLD

corresponding to the parameter x j .

If we choose a complete basis {|u1〉, . . . , |ud〉}, and
let S =∑ j Su j = ( A B

B† F RLD) � 0, where (A) jk = Tr(ρxXjXk ),

(B) jk = Tr(ρxXjL
R†
k ) = I , (F RLD) jk = Tr(ρxLR

j LR†
k ), we ob-

tain the RLD bound

Cov(x̂) � A � (F RLD)−1. (E2)

This can be equivalently written as

Cov−1(x̂) � F RLD = F RLD
Re + iF RLD

Im , (E3)

with F RLD
Re and F RLD

Im as the real and imaginary parts of F RLD,
respectively, F RLD

Re = 1
2 [F RLD + (F RLD)T ] is real symmetric

and F RLD
Im = 1

2 [F RLD − (F RLD)T ] is real skew symmetric. By
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taking the transpose, we also have [note Cov(x̂) is symmetric]

Cov−1(x̂) � (F RLD)T = F RLD
Re − iF RLD

Im , (E4)

from which we get

F
− 1

2
Q Cov−1(x̂)F

− 1
2

Q � F
− 1

2
Q F RLD

Re F
− 1

2
Q ± iF

− 1
2

Q F RLD
Im F

− 1
2

Q .

(E5)

Then for any vector |w〉, we have

〈w|F− 1
2

Q Cov−1(x̂)F
− 1

2
Q |w〉 � 〈w|F− 1

2
Q F RLD

Re F
− 1

2
Q |w〉

−∣∣〈w|F− 1
2

Q F RLD
Im F

− 1
2

Q |w〉∣∣. (E6)

By choosing |w〉 as all the eigenvectors of F
− 1

2
Q F RLD

Im F
− 1

2
Q and

making a summation, we obtain the tradeoff relation from the
standard RLD as

Tr
[
F−1

Q Cov−1(x̂)
]
� Tr

[
F−1

Q F RLD
Re

]− ∥∥F
− 1

2
Q F RLD

Im F
− 1

2
Q

∥∥
1.

(E7)

When there are ν copies of the state, this gives

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� Tr

[
F−1

Q F RLD
Re

]− ∥∥F
− 1

2
Q F RLD

Im F
− 1

2
Q

∥∥
1.

(E8)
The bound can be improved by taking transposes on

any Su. We choose a complete basis {|u1〉, . . . , |ud〉} as the
orthonormal eigenvectors of

√
ρx(LR

j LR†
k − LR

k LR†
j )

√
ρx. As

mentioned in the main text, for any |uq〉, 1
2i 〈uq|√ρx(LR

j LR†
k −

LR
k LR†

j )
√

ρx|uq〉, which is the imaginary part of (Fuq ) jk is a real
number, which we denote as t q

jk . We then define

S̄uq :=
{

Suq when t q
jk � 0,

ST
uq

when t q
jk < 0.

(E9)

By summing S̄uq we get

S̄ =
∑

q

S̄uq =
(

Ā B̄
B̄† F̄ RLD

)
, (E10)

where B̄ = I + iB̄Im, F̄ RLD =∑q F̄uq with F̄uq equals to either
Fuq or F T

uq
so that the imaginary part of (F̄uq ) jk is always

positive. The imaginary part of the jkth entry of F̄ RLD is then
given by

(F̄Im) jk = 1
2

∥∥√ρx
(
LR

j LR†
k − LR

k LR†
j

)√
ρx

∥∥
1, (E11)

and the real part of F̄ RLD remains the same as F RLD
Re .

By the Schur’s complement we then have F̄ RLD −
B̄†Cov−1(x̂)B̄ � 0, which can be equivalently written as

F̄ RLD
Re + iF̄ RLD

Im

− [Cov−1(x̂) + B̄T
ImCov−1(x̂)B̄Im

+ i
(
B̄T

ImCov−1(x̂) − Cov−1(x̂)B̄Im
)]

� 0. (E12)

We first assume FQ = I , in this case Cov−1(x̂) � FQ = I .
Then by following the same procedure as previous, we denote
Cov−1(x̂)B̄Im as D and get

F̄ RLD
Re − Cov−1(x̂) − DT D + i

(
F̄ RLD

Im + DT − D
)
� 0. (E13)

By taking a 2 × 2 principal submatrix we have

((
F̄ RLD

Re

)
j j − Cov−1(x̂) j j − (DT D) j j −Cov−1(x̂) jk − (DT D) jk

−Cov−1(x̂)k j − (DT D)k j
(
F̄ RLD

Re

)
kk − Cov−1(x̂)kk − (DT D)kk

)

+ i

(
0

(
F̄ RLD

Im

)
jk + Dk j − Djk

−(F̄ RLD
Im

)
jk

− Dk j + Djk 0

)
� 0. (E14)

From the positiveness of the determinant, we have[(
F̄ RLD

Re

)
j j − Cov−1(x̂) j j − (DT D) j j

][(
F̄ RLD

Re

)
kk − Cov−1(x̂)kk − (DT D)kk

]
� [Cov−1(x̂) jk + (DT D) jk]2 + [(F̄ RLD

Im

)
jk + Dk j − Djk

]2
, (E15)

from which we can get[(
F̄ RLD

Re

)
j j − Cov−1(x̂) j j − (DT D) j j

]+ [(F̄ RLD
Re

)
kk − Cov−1(x̂)kk − (DT D)kk

]
� 2
√[(

F̄ RLD
Re

)
j j

− Cov−1(x̂) j j − (DT D) j j
][(

F̄ RLD
Re

)
kk

− Cov−1(x̂)kk − (DT D)kk
]

� 2
√

[Cov−1(x̂) jk + (DT D) jk]2 + [(F̄ RLD
Im

)
jk

+ Dk j − Djk
]2

� 2
∣∣(F̄ RLD

Im

)
jk + Dk j − Djk

∣∣, (E16)

i.e., (
F̄ RLD

Re

)
j j − Cov−1(x̂) j j + (F̄ RLD

Re

)
kk − Cov−1(x̂)kk � 2

∣∣(F̄ RLD
Im

)
jk + Dk j − Djk

∣∣+ (DT D) j j + (DT D)kk . (E17)
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Again as (DT D) j j =∑p D2
p j � D2

k j and (DT D)kk =∑
p D2

pk � D2
jk , we have

(DT D) j j + (DT D)kk

=
∑

p

(
D2

p j + D2
pk

)
� D2

k j + D2
jk

= 1

2
(Dk j − Djk )2 + 1

2
(Dk j + Djk )2. (E18)

Thus,(
F̄ RLD

Re

)
j j

− Cov−1(x̂) j j + (F̄ RLD
Re

)
kk

− Cov−1(x̂)kk

� 2
∣∣(F̄ RLD

Im

)
jk + Dk j − Djk

∣∣+ (DT D) j j + (DT D)kk .

� 2
∣∣(F̄ RLD

Im

)
jk + Dk j − Djk

∣∣+ 1
2 (Dk j − Djk )2

� min
{

1
2 |(F̄Im) jk|2, 2

}
, (E19)

where in the last inequality we used the fact that when |y| � 2,
2|y + x| + 1

2 x2 � 1
2 y2 since

2|y + x| + 1
2 x2

= 2|y + x| + 1
2 (y + x − y)2

= 2|y + x| + 1
2 (y + x)2 − y(x + y) + 1

2 y2

� 2|y + x| − |y(x + y)| + 1
2 y2

= (2 − |y|)|x + y| + 1
2 y2

� 1
2 y2, (E20)

while when |y| � 2, 2|y + x| + 1
2 x2 � 2 since

2|y + x| + 1
2 x2 � 2(|y| − |x|) + 1

2 x2

= 1
2 (|x| − 2)2 − 2 + 2|y|

� 2|y| − 2

� 2. (E21)

From which we can get(
F̄ RLD

Re

)
j j − Cov−1(x̂) j j + (F̄ RLD

Re

)
kk

−Cov−1(x̂)kk � min
{

1
2

∣∣F̄ RLD
Im

)
jk|2, 2

}
. (E22)

By repeating the procedure for different choices of j, k and
making a summation, we then get the tradeoff relation, under
the parametrization that FQ = I , as

Tr[Cov−1(x̂)] � Tr
[
F̄ RLD

Re

]− 1

4(n − 1)

∥∥CRLD
1

∥∥2

F , (E23)

with (CRLD
1 ) jk = min{ 1

2‖√ρx(LR
j LR†

k − LR
k LR†

j )
√

ρx‖1, 2}.
If we repeat the 1-local measurement on ν copies of the

state, the tradeoff relation under the 1-local measurement,
with the parametrization that FQ = I , is then

1

ν
Tr[Cov−1(x̂)] � Tr

[
F RLD

Re

]− 1

4(n − 1)

∥∥CRLD
1

∥∥2

F
. (E24)

When FQ �= I initially, we can first make a reparametrization

with x̃ = F
− 1

2
Q x. The tradeoff relation in Eq. (E24) can then be

expressed in the original parametrization as

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]

� Tr
[
F−1

Q F RLD
Re

]− 1

4(n − 1)

∥∥CRLD
1

∥∥2

F
(E25)

with the entries of CRLD
1 given by

(
CRLD

1

)
jk = min

{
1
2

∥∥√ρx
(
L̃R

j L̃R†
k − L̃R

k L̃R†
j

)√
ρx

∥∥
1, 2
}
,

(E26)

where L̃R
j =∑q(F

− 1
2

Q ) jqLR
q and L̃R

k =∑q(F
− 1

2
Q )kqLR

q .
For p-local measurements, we can similarly get

1

ν
Tr
[
F−1

Q Cov−1(x̂)
]
� Tr

[
F−1

Q F RLD
Re

]− 1

4(n − 1)

∥∥∥∥CRLD
p

p

∥∥∥∥
2

F

,

(E27)

where (CRLD
p ) jk = min{ 1

2‖
√

ρ
⊗p
x (L̃R

j pL̃R†
kp − L̃R

kpL̃R†
j p )
√

ρ
⊗p
x

‖1, 2p}.

APPENDIX F: EXAMPLE 2

Here we provided more detailed calculations for exam-
ple 2. For mixed states ρx = 1

3 I +∑ j x jG j with Gj = 1
2� j ,

where {� j}8
j=1 are the Gell-Mann matrices,

�1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, �2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠,

�3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, �4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

�5 =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, �6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

�7 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, �8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (F1)

If the parameters x j are all close to 0, the SLDs and RLDs are
all given by Lj = 3Gj . Thus, the tradeoff relations from the
SLDs and RLDs will be the same. The QFI matrix is given

as FQ = F RLD = 3
2 I , thus L̃ j =

√
2
3 Lj = √

6Gj . The entries of
C1 are given by

(C1) jk = 1
2‖√ρx[L̃ j, L̃k]

√
ρx‖1 = ‖[Gj, Gk]‖1, (F2)
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FIG. 5. Eigenvalues and multiplicities of
∑p

r=1[G(r)
j , G(r)

k ].

from which the matrix form of C1 can be computed as

C1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1
2

1
2

1
2

1
2 0

1 0 1 1
2

1
2

1
2

1
2 0

1 1 0 1
2

1
2

1
2

1
2 0

1
2

1
2

1
2 0 1 1

2
1
2

√
3

2
1
2

1
2

1
2 1 0 1

2
1
2

√
3

2
1
2

1
2

1
2

1
2

1
2 0 1

√
3

2
1
2

1
2

1
2

1
2

1
2 1 0

√
3

2

0 0 0
√

3
2

√
3

2

√
3

2

√
3

2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (F3)

Thus, we have

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]

� n − 1

4(n − 1)
‖C1‖2

F

= 8 − 1

28
× 2

(
5 × 1 + 4 × 3

4
+ 16 × 1

4

)

= 50

7
≈ 7.14. (F4)

For p-local measurements on ρx, the entries of Cp are given
by

(Cp) jk = 1

2

∥∥√ρ
⊗p
x [L̃ j p, L̃kp]

√
ρ

⊗p
x

∥∥
1 = 1

3p−1
‖[Gj p, Gkp]‖1.

(F5)
For all j, k, the eigenvalues of [Gj, Gk] are {−λ, 0, λ}, where

λ = 1
2 or 1

4 or
√

3
4 . Suppose that the eigenvectors correspond-

ing to eigenvalues {−λ, 0, λ} can be written as {|�l〉}l∈{−λ,0,λ}.
The eigenvectors of [Gj p, Gkp] =∑p

r=1[G(r)
j , G(r)

k ] are then
given by ⊗p

r=1|�lr 〉 with the corresponding eigenvalues∑p
r=1 lr , where lr ∈ {−λ, 0, λ}. The recursive relation to ob-

tain the eigenvalues is depicted in Fig. 5(a), where in Fig. 5(b)
a few possible values of

∑p
r=1 lr have been listed [note that

the (p + 1)th row in Fig. 5(b) corresponds to all possible
values of

∑p
r=1 lr]. The multiplicity of each eigenvalue can

be obtained as Fig. 5(c), which is just the trinomial triangle
that corresponds to the coefficients of (1 + x + x2)p. Hence,
the eigenvalues of [Gj p, Gkp] =∑p

r=1[G(r)
j , G(r)

k ] are λs with

multiplicity (p
s)2 for s = −p,−p + 1, . . . , p, where (p

s)2 =∑p
i=0(−1)i(p

i )(
2p − 2i
p − s − i) is the trinomial coefficient.

Denote Np =∑p
s=0 s(p

s)2, we then have

(Cp) jk = 1

3p−1
‖[Gj p, Gkp]‖1 = (C1) jk

Np

3p−1
. (F6)

The Frobenius norm of Cp is then given by

‖Cp‖F =
√∑

jk

(Cp)2
jk =

√√√√∑
jk

(
(C1) jk

1

3p−1
Np

)2

= 1

3p−1
Np

√∑
jk

((C1) jk )2 = 1

3p−1
Np‖C1‖F . (F7)

Using the tradeoff relations for p-local measurements, we
have

1

ν
Tr
[
F−1

Q Cov(x̂)−1]

� n − 1

4(n − 1)

∥∥∥∥Cp

p

∥∥∥∥
2

F

= n − 1

4(n − 1)
‖C1‖2

F

(
1

p3p−1
Np

)2

= 8 − 6

7

(
1

p3p−1
Np

)2

. (F8)

Specifically, for 2-local measurements,
1

ν
Tr
[
F−1

Q Cov(x̂)−1
]

� n − 1

4(n − 1)

∥∥∥∥C2

2

∥∥∥∥
2

F

= 8 − 6

7
× 1

4
× 16

9
= 160

21
≈ 7.62, (F9)

and for 3-local measurements,

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]

� n − 1

4(n − 1)

∥∥∥∥C3

3

∥∥∥∥
2

F

= 8 − 6

7
× 1

9
× 25

9
= 1462

189
≈ 7.74. (F10)
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If we choose the basis {|u〉q} as computational basis |u〉0 =
|0〉, |u〉1 = |1〉, |u〉2 = |2〉, the matrices Fuq are given as

Fu0 = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 i 0 0 0 0 0 0
−i 1 0 0 0 0 0 0

0 0 1 0 0 0 0
√

3
3

0 0 0 1 i 0 0 0
0 0 0 −i 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0
√

3
3 0 0 0 0 1

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Fu1 = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −i 0 0 0 0 0 0
i 1 0 0 0 0 0 0

0 0 1 0 0 0 0 −
√

3
3

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 i 0
0 0 0 0 0 −i 1 0

0 0 −
√

3
3 0 0 0 0 1

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(F11)

Fu2 = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 −i 0 0 0
0 0 0 i 1 0 0 0
0 0 0 0 0 1 −i 0
0 0 0 0 0 i 1 0
0 0 0 0 0 0 0 4

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F̄Im =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (F12)

Let F̄ = Fu0 + F T
u1

+ F T
u2

, this gives a bound as

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]

� n − (n − 2)

(n − 1)2
‖F̄Im‖2

F

= 8 − 6

49
× 4 ≈ 7.51. (F13)

If we only estimate {x1, x2, x4, x5}, the associated matrices
are given by the 4 × 4 submatrices of the original ones,

C1 =

⎛
⎜⎜⎜⎝

0 1 1
2

1
2

1 0 1
2

1
2

1
2

1
2 0 1

1
2

1
2 1 0

⎞
⎟⎟⎟⎠,

F̄Im =

⎛
⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠, (F14)

which further gives ‖C1‖F = √
6, ‖F̄Im‖F = 2. Then, we have

1

ν
Tr
[
F−1

Q Cov(x̂)−1] � n − 1

4(n − 1)
‖C1‖2

F

= 4 − 1

2
= 7

2
= 3.5, (F15)

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]
� n − (n − 2)

(n − 1)2
‖F̄Im‖2

F

= 4 − 8

9
= 28

9
≈ 3.11. (F16)

For p-local measurements, by following the same deriva-
tion as the previous case, we have

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]

� n − 1

4(n − 1)

∥∥∥∥Cp

p

∥∥∥∥
2

F

= n − 1

4(n − 1)
‖C1‖2

F

(
1

p3p−1
Np

)2

= 4 − 1

2

(
1

p3p−1
Np

)2

. (F17)

Specifically, for p = 2 we have

1

ν
Tr
[
F−1

Q Cov(x̂)−1]
� n − 1

4(n − 1)

∥∥∥C2

2

∥∥∥2

F

= 4 − 1

2
× 1

4
× 16

9
= 34

9
≈ 3.78, (F18)

and for p = 3,

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]

� n − 1

4(n − 1)

∥∥∥∥C3

3

∥∥∥∥
2

F

= 4 − 1

2
× 1

9
× 25

9
= 623

162
≈ 3.85. (F19)

If we choose the basis {|uq〉} as the computational basis
|u0〉 = |00〉, |u1〉 = |01〉, |u2〉 = |02〉, |u3〉 = |10〉, ..., |u8〉 =
|22〉, the imaginary parts of the matrices Fuq are given as

Fu0Im =

⎛
⎜⎜⎝

0 1
3 0 0

− 1
3 0 0 0

0 0 0 1
3

0 0 − 1
3 0

⎞
⎟⎟⎠,

Fu4Im =

⎛
⎜⎜⎝

0 − 1
3 0 0

1
3 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠,

Fu8Im =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 − 1

3
0 0 1

3 0

⎞
⎟⎟⎠,
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Fu1Im = Fu3Im = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1

3
0 0 − 1

3 0

⎞
⎟⎟⎠,

Fu2Im = Fu6Im = 1

2

⎛
⎜⎜⎝

0 1
3 0 0

− 1
3 0 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠,

Fu5Im = Fu7Im = 1

2

⎛
⎜⎜⎝

0 − 1
3 0 0

1
3 0 0 0
0 0 0 − 1

3
0 0 1

3 0

⎞
⎟⎟⎠. (F20)

The optimal F̄Im2 is then given by F̄Im2 = Fu0Im + F T
u4Im +

F T
u8Im + (Fu1Im + Fu3Im) + (Fu2Im + Fu6Im) + (Fu5Im + Fu7Im)T ,

i.e.,

F̄Im2 =

⎛
⎜⎜⎝

0 4
3 0 0

− 4
3 0 0 0

0 0 0 4
3

0 0 − 4
3 0

⎞
⎟⎟⎠, (F21)

which gives a tighter bound as

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]

� n − (n − 2)

(n − 1)2

∥∥∥∥ F̄Im2

2

∥∥∥∥
2

F

= 4 − 2

9
× 1

4
× 4 × 16

9
= 4 − 32

81
≈ 3.60. (F22)

If we only estimate {x1, x2, x5}, the associated matrices are
given by the 3 × 3 submatrices of the original ones,

C1 =

⎛
⎜⎝0 1 1

2

1 0 1
2

1
2

1
2 0

⎞
⎟⎠, F̄Im =

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠, (F23)

which further gives ‖C1‖F = √
3, ‖F̄Im‖F = √

2. Then, we
have the tradeoff relations

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]
� n − 1

4(n − 1)
‖C1‖2

F

= 3 − 3

8
= 21

8
= 2.625, (F24)

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]
� n − (n − 2)

(n − 1)2
‖F̄Im‖2

F

= 3 − 1

2
= 5

2
= 2.5. (F25)

For p-local measurements, we have

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]
� n − 1

4(n − 1)

∥∥∥∥Cp

p

∥∥∥∥
2

F

= n − 1

4(n − 1)
‖C1‖2

F

(
1

p3p−1
Np

)2

= 3 − 3

8

(
1

p3p−1
Np

)2

. (F26)

Specifically, for p = 2,

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]

� n − 1

4(n − 1)

∥∥∥∥C2

2

∥∥∥∥
2

F

= 3 − 3

8
× 1

4
× 16

9
= 17

6
≈ 2.83, (F27)

and for p = 3,

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]

� n − 1

4(n − 1)

∥∥∥∥C3

3

∥∥∥∥
2

F

= 3 − 3

8
× 1

9
× 25

9
= 623

216
≈ 2.88. (F28)

For 2-local measurements, if we choose the basis {|uq〉} as
the computational basis |u0〉 = |00〉, |u1〉 = |01〉, |u2〉 = |02〉,
|u3〉 = |10〉, ..., |u8〉 = |22〉, the imaginary parts of the matri-
ces Fuq are given as

Fu0Im =
⎛
⎝ 0 1

3 0
− 1

3 0 0
0 0 0

⎞
⎠,

Fu4Im =
⎛
⎝0 − 1

3 0
1
3 0 0
0 0 0

⎞
⎠,

Fu1Im = Fu3Im = Fu8Im = 0,

Fu2Im = Fu6Im = 1

2

⎛
⎝ 0 1

3 0
− 1

3 0 0
0 0 0

⎞
⎠,

Fu5Im = Fu7Im = 1

2

⎛
⎝0 − 1

3 0
1
3 0 0
0 0 0

⎞
⎠. (F29)

The optimal F̄Im2 is then given by F̄Im2 = Fu0Im + F T
u4Im +

(Fu2Im + Fu6Im) + (Fu5Im + Fu7Im)T , i.e.,

F̄Im2 =
⎛
⎝ 0 4

3 0
− 4

3 0 0
0 0 0

⎞
⎠, (F30)

which gives

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]

� n − (n − 2)

(n − 1)2

∥∥∥∥ F̄Im2

2

∥∥∥∥
2

F

= 3 − 1

4
× 1

4
× 2 × 16

9
= 3 − 2

9
≈ 2.78. (F31)

This is tighter than the bound given by C2.
If we only estimate {x1, x2}, the associated matrices are

given by the 2 × 2 submatrices of the original ones,

C1 =
(

0 1
1 0

)
(F32)
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FIG. 6. Upper bound on �p and the QCRB and Holevo bounds with the number of parameters equal to 8, 4, 3, 2, respectively.

which further gives ‖C1‖F = √
2. Then, we have the tradeoff

relation

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]

� n − 1

4(n − 1)
‖C1‖2

F = 2 − 1

2
= 3

2
. (F33)

For p-local measurements, we have

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]

� n − 1

4(n − 1)

∥∥∥∥Cp

p

∥∥∥∥
2

F

= n − 1

4(n − 1)
‖C1‖2

F

(
1

p3p−1
Np

)2

= 2 − 1

2

(
1

p3p−1
Np

)2

. (F34)

Specifically, for p = 2,

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]

� n − 1

4(n − 1)

∥∥∥∥C2

2

∥∥∥∥
2

F

= 2 − 1

2
× 1

4
× 16

9
= 16

9
≈ 1.78, (F35)

and for p = 3,

1

ν
Tr
[
F−1

Q Cov(x̂)−1
]

� n − 1

4(n − 1)

∥∥∥∥C3

3

∥∥∥∥
2

F

= 2 − 1

2
× 1

9
× 25

9
= 299

162
≈ 1.85. (F36)

We plot the bound with different p in Fig. 6. It can be seen that
the Holevo bound, which equals to the QCRB since the weak
commutative condition holds in this case, is only achievable
when p → ∞.
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