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In most quantum technologies, measurements need to be performed on the parametrized quantum states
to transform the quantum information to classical information. The measurements, however, inevitably
distort the information. The characterization of the discrepancy is an important subject in quantum
information science, which plays a key role in understanding the difference between the structures of
quantum and classical informations. Here we analyze the difference in terms of the Fisher information
metric and present a framework that can provide analytical bounds on the discrepancy under hierarchical
quantum measurements. Specifically, we present a set of analytical bounds on the difference between the
quantum and classical Fisher information metric under hierarchical p-local quantum measurements, which
are measurements that can be performed collectively on at most p copies of quantum states. The results can
be directly transformed to the precision limit in multiparameter quantum metrology, which leads to
characterizations of the trade-off among the precision of different parameters. The framework also provides
a coherent picture for various existing results by including them as special cases.

DOI: 10.1103/PhysRevLett.128.250502

Quantum measurement serves as the gateway between
quantum information and classical information. In most
quantum technologies, the information encoded in the
parametrized quantum states needs to be extracted by
the measurements. For example, in quantum metrology,
the estimation of unknown parameters encoded in the
quantum states is achieved through the measurements on
the parametrized quantum states; in the variational quantum
circuit certain information needs to be extracted via the
measurements on the parametrized quantum states to
update the circuit. Upon the measurements, however,
certain properties of quantum information, such as non-
commutativity, are lost. This inevitably induces distortions
on the information structure. Understanding such distortion
is an important subject in quantum information science
which helps distinguish the structure of the quantum and
classical information. It also helps to understand the
maximal amount of information that can be extracted from
quantum states.
In this Letter, we characterize the structure of the

information in terms of the Fisher information metric
[1–16] and study the distortion of the metric under
hierarchical p-local quantum measurements, which are
the measurements that can be performed collectively on
at most p copies of quantum states. We note that the Fisher
information metric is the only Riemannian metric in
information geometry that is invariant under sufficient
statistics [17], and has been employed in a broad range
of applications [18], such as quantum metrology [1,2],
quantum phase transition [19,20], entanglement witness

[21,22], as well as the natural gradient and effective
dimension in statistical learning [17,23].
We first introduce the quantum and classical Fisher

information metric together with the existing results, then
present an approach to characterize the achievable classical
Fisher information metric under hierarchical p-local quan-
tum measurements. This framework provides a systemati-
cal way to generate various analytical bounds on the
difference between the quantum and classical Fisher
information metric under general p-local measurements.
The framework also includes various existing results,
which were seemingly disconnected from each other
previously, as special cases thus put them into a coherent
picture.
Givend-dimensional parametrized quantum state ρx, with

n parameters as x ¼ ðx1;…; xnÞ, the jkth entry of the
quantum Fisher information matrix (QFIM), denoted as
FQðxÞ, is given by [1–3]FQðxÞjk ¼ 1

2
Tr½ρxðLjLk þ LkLjÞ�,

whereLjðLkÞ is the symmetric logarithmic derivative (SLD)
with respect to the parameter xjðxkÞ and can be obtained
from the equation ð∂ρx=∂xjÞ ¼ 1

2
ðρxLj þ LjρxÞ. The QFIM

quantifies the quantum Fisher information metric, which is
related to the Bures metric as [3] D2

Bðρx; ρxþdxÞ ¼
1
4
dxFQðxÞdxT , where dx ¼ ðdx1;…; dxnÞ are infinite-

simal changes of the parameters and DBðρ1; ρ2Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1

p
ρ2

ffiffiffiffiffi
ρ1

ppq
is the Bures distance [24]. The

QFIM is additive with respect to the copies of the state;
i.e., the QFIM of ρ⊗p

x , which we denote as FQp, equals
to pFQ.
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General measurements that transform the parametrized
quantum states to classical data are the positive operator-
valued measurement(POVM), which is a set of fMαg with
Mα ≥ 0 and

P
α Mα ¼ I. The probability of obtaining the

result α is given by pðαjxÞ ¼ TrðρxMαÞ. As illustrated in
Fig. 1, the measurement changes the parametrized quantum
state to the parametrized probability distribution.
The Fisher information metric of the probability distri-

bution is given by the classical Fisher information matrix
(CFIM) [25], denoted as FCðxÞ, whose jkth entry is given
by FCðxÞjk ¼

R
α½1=pðαjxÞ�½∂pðαjxÞ=∂xj�½∂pðαjxÞ=∂xk�dα.

The classical Fisher information metric is related to the
Euclidean distance between

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pðαjxÞp

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðαjxþdxÞp

as

Z
α
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pðαjxÞ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðαjxþdxÞ

p
Þ2dα¼1

4
dxFCðxÞdxT: ð1Þ

We note that for diagonal quantum states, where the
diagonal entries can be regarded as the classical probability
distribution, the Bures distance reduces to the Euclidean
distance.
The QFIM and CFIM characterize the geometrical

structure of the parametrized quantum states and the
classical probability distribution, respectively. As measure-
ments can be regarded as a special set of quantum channels
(known as the quantum-classical channel), the data process
inequality tells us that the distance cannot increase under
the measurements. This implies that under any measure-
ment FCðxÞ ≤ FQðxÞ.
In classical estimation, the CFIM provides an asymp-

totically achievable lower bound on the covariance for
locally unbiased estimators of the parameters, which is

known as the Cramér-Rao bound [26] with Covðx̂Þ ≥
ð1=νÞF−1

C ðxÞ, where x̂ denotes the locally unbiased esti-
mator of x and Covðx̂Þ denotes the covariance matrix where
the jkth entry is given by Covðx̂Þjk¼E½ðx̂j−xjÞðx̂k−xkÞ�, ν
is the number of sampled data. Since FCðxÞ ≤ FQðxÞ, the
covariance matrix is further bounded by the QFIM as
Covðx̂Þ ≥ ð1=νÞF−1

Q ðxÞ, which is known as the quantum
Cramér-Rao bound (QCRB) [1,2].
If there exists a measurement such that FCðxÞ ¼ FQðxÞ,

the measurement then preserves the local geometrical
structure and the QCRB is saturable. It is known that if
the quantum state is parametrized by a single parameter,
i.e., n ¼ 1, then there always exists a measurement that can
preserve the local Fisher information structure [1].
Furthermore, the measurement that saturates the QCRB
can be taken as a 1-local measurement; collective mea-
surements are not required. One such measurement is the
projective measurement on the eigenvectors of the SLD [1].
When there are multiple parameters, the information
structure becomes much more complicated. First, the
SLDs for different parameters may not commute with each
other; thus in general there does not exist a measurement
that can make FCðxÞ ¼ FQðxÞ [6,27–62]. The distortion of
the Fisher information structure is then typically inevitable.
Second, collective measurements matter. As illustrated in
Fig. 2, if we repeat the 1-local measurement on two copies
of quantum states, the maximal CFIM at most doubles.
However, if collective measurements can be performed, it is
possible to obtain larger CFIM due to more degrees of
freedom in the measurements. In general, under p-local
measurements, the CFIM that can be extracted from p
copies of quantum states, which we denote as FCpðxÞ, can
be larger than pFCðxÞ. The CFIM is in general super-
additive with respect to the number of copies of quantum

FIG. 1. The measurement transforms the parametrized quantum
states to classical probability distribution where the classical
Fisher information metric is always upper bounded by the
quantum Fisher information metric.

FIG. 2. The transformation of information geometry under
1-local and 2-local measurements, respectively. Since there is
more freedom in the 2-local measurements, the classical Fisher
information metric under the optimal 2-local measurement is in
general less distorted than the metric under the 1-local measure-
ments; i.e., the classical Fisher information matrix under 2-local
measurements can be closer to the quantum Fisher information
matrix. The classical Fisher information matrix under p-local
measurements can get even closer when p increases.
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states. This is related to the notion of the nonlocality
without entanglement [63].
We use Tr½F−1

QpðxÞFCpðxÞ� to quantify the difference
between the QFIM and the CFIM that can be extracted
by p-local measurements on ρ⊗p

x [27–29,56]. Compared to
other quantifiers of the difference, such as kFQpðxÞ−
FCpðxÞk, Tr½F−1

QpðxÞFCpðxÞ� has the advantage that it is
invariant under reparametrization. Since FCpðxÞ ≤ FQpðxÞ,
we have a trivial upper bound Tr½F−1

QpðxÞFCpðxÞ� ≤
TrðInÞ ¼ n (here In is the n × n identity matrix), and this
upper bound is saturated when there exists a p-local
measurement that makes FCpðxÞ ¼ FQpðxÞ. In general,
Tr½F−1

QpðxÞFCpðxÞ� < n and n − Tr½F−1
QpðxÞFCpðxÞ� quanti-

fies the gap between the QFIM and the achievable CFIM
under p-local measurements. We use Γp to denote the
maximal Tr½F−1

QpðxÞFCpðxÞ� over all p-local measurements,
then Γ1 ≤ Γ2 ≤ � � � ≤ Γ∞ ≤ n.
Previous results on achievable CFIM are mostly on the

extreme cases with p ¼ 1, 2 or p ¼ ∞ [2,27,29–31,51].
Some of the previous results are stated in terms of the
covariance matrix instead of the CFIM; we note that since
the classical Cramér-Rao bound is achievable asymptoti-
cally, the covariance matrix and the inverse of the CFIM are
interchangeable.
For 1-local measurement (p ¼ 1), Nagaoka provided a

bound for the estimation of two parameters (n ¼ 2) as
[64,65]

νTr½Covðx̂Þ� ≥ min
fX1;X2g

TrðρxX2
1Þ þ TrðρxX2

2Þ

þ k ffiffiffiffiffi
ρx

p ½X1; X2�
ffiffiffiffiffi
ρx

p k1; ð2Þ
where fXjg are Hermitian operators that satisfy the locally
unbiased condition, TrðρxXjÞ¼0, and Tr½ð∂ρx=∂xkÞXj�¼
δjk, with δjk as the Kronecker delta function. Recently the
Nagaoka bound has been generalized to n parameters [66],
which in general can only be evaluated numerically. Gill
and Massar provided an analytical bound under 1-local
measurements as Tr½F−1

Q ðxÞFCðxÞ� ≤ d − 1, with d as the
dimension of the Hilbert space for a single ρx [27]. The
Gill-Massar bound is nontrivial only when n ≥ d.
A necessary condition for the saturation of the QCRB

under 1-local measurements is the partial commutative
condition [59], which requires the SLDs commute on the
support of ρx. Specifically, if we write ρx in the eigenvalue
decomposition as ρx ¼

P
m
i¼1 λijΨiihΨij, with λi > 0, the

partial commutative condition is hΨrj½Lj; Lk�jΨsi ¼ 0 for
any j; k ∈ f1;…; ng and r; s ∈ f1;…; mg [59].
For p ¼ 2, Zhu and Hayashi provided an upper bound on

Γ2 as Tr½F−1
Q2ðxÞFC2ðxÞ� ≤ 3

2
ðd − 1Þ [51], which is non-

trivial only when n ≥ 3
2
ðd − 1Þ.

For p ¼ ∞, Holevo provided an achievable
bound [2] in terms of the weighted covariance
matrix as νTr½WCovðx̂Þ� ≥ minfXjgfTr½WReZðXÞ�þ
k ffiffiffiffiffi

W
p

ImZðXÞ ffiffiffiffiffi
W

p k1g, where W ≥ 0 is a weighted matrix,

and ZðXÞ is a matrix with its jkth entry given by
ZðXÞjk ¼ TrðρxXjXkÞ. Here fX1;…; Xng is a set of
Hermitian operators that satisfy the local unbiased con-
dition, and ReZðxÞ and ImZðXÞ are the real and imaginary
part of ZðxÞ, respectively. The Holevo bound in general can
only be evaluated numerically [62]. For pure states the
Holevo bound can be saturated by 1-local measurements
[52], while for mixed states the saturation of the Holevo
bound in general requires collective measurements on
infinite number of copies of the states. The necessary
and sufficient condition for the Holevo bound to coincide
with the QCRB is the weak commutative condition, which
is Trðρx½Lj; Lk�Þ ¼ 0 for all j; k ∈ f1;…; ng.
For general p-local measurements, there is little under-

standing on the achievable CFIM. We present an approach
that can lead to various bounds Γp. These bounds provide a
necessary condition for the saturation of the QCRB under
general p-local measurements, which recovers the partial
commutative condition at p ¼ 1 and the weak commutative
condition at p → ∞.
For a state ρx, with x ¼ ðx1;…; xnÞ, given any POVM

fMαg and any jui, we define Covu as an n × n matrix with
the jkth entry given by

ðCovuÞjk ¼
X
α

½x̂jðαÞ − xj�½x̂kðαÞ − xk�huj ffiffiffiffiffi
ρx

p
Mα

ffiffiffiffiffi
ρx

p jui;

ð3Þ
and Au as an n × n matrix with the jkth entry given by

ðAuÞjk ¼ huj ffiffiffiffiffi
ρx

p
XjXk

ffiffiffiffiffi
ρx

p jui

¼ 1

2
huj ffiffiffiffiffi

ρx
p fXj; Xkg ffiffiffiffiffi

ρx
p jui

þ i
1

2i
huj ffiffiffiffiffi

ρx
p ½Xj; Xk� ffiffiffiffiffi

ρx
p jui; ð4Þ

where fx̂jg are locally unbiased estimators and fXj ¼P
α½x̂jðαÞ − xj�Mαg satisfy the locally unbiased condition.

For any jui we can prove that Covu ≥ Au and Covu ≥ AT
u .

And for any set of fjuqig that satisfies
P

q juqihuqj ¼ I, it
is easy to verify that Covðx̂Þ ¼ P

q Covuq . Then for any

choices of Āuq ∈ fAuq; A
T
uqg, we have Covðx̂Þ ¼P

q Covuq ≥ Ā ¼ P
q Āuq , where each Āuq can be taken

independently as either Auq or A
T
uq. By decomposing Ā into

the real and imaginary part as Ā ¼ ĀRe þ iĀIm, we obtain
a bound on the weighted covariance matrix:

νTr½WCovðx̂Þ� ≥ min
fXjg

Tr½WĀRe� þ k
ffiffiffiffiffi
W

p
ĀIm

ffiffiffiffiffi
W

p
k1; ð5Þ

where the number of repetitions ν is included. Any choices
of fjuqig with

P
q juqihuqj ¼ I and any Āuq ∈ fAuq; A

T
uqg

lead to a valid bound.
This provides a versatile tool to obtain many useful

bounds by properly choosing fjuqig and fĀuqg. In
particular, the Holevo bound [2] and the Nagaoka bound
[64,65] can be recovered from this general bound by
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making particular choices of fjuqig and fĀuqg [67].
Furthermore, by combining with an improved Robertson’s
uncertainty relation for multiple observables [67–69], we
can obtain a set of analytical bounds on the gap between the
QFIM and the CFIM under general p-local measurements.
Specifically for pure states we have

Γ ≤ n − fðnÞkF−1=2
Q FImF

−1=2
Q k2F; ð6Þ

where FIm is the matrix with the entries given by ðFImÞjk ¼
ð1=2iÞTrðρx½Lj; Lk�Þ and k · kF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j;k jð·Þjkj2

q
is

the Frobenius norm, fðnÞ can take 1=4ðn − 1Þ,
ðn − 2Þ=ðn − 1Þ2, or 1

5
, which all lead to valid bounds.

Since larger fðnÞ leads to tighter bound, we can take
fðnÞ ¼ maxf1=4ðn − 1Þ; ðn − 2Þ=ðn − 1Þ2; 1

5
g. Note that

here we use Γ instead of Γp, since for pure
states Γ1 ¼ Γ2 ¼ � � � ¼ Γ∞.
For mixed states under p-local measurements we have

Γp ≤ n − fðnÞ
����F

−1=2
Q F̄ImpF

−1=2
Q

p

����
2

F
; ð7Þ

where fðnÞ ¼ maxf1=4ðn − 1Þ; ðn − 2Þ=ðn − 1Þ2; 1
5
g, F̄Imp

is the imaginary part of F̄ ¼ P
q F̄uq with each F̄uq equal to

either Fuq or FT
uq, where Fuq is an n × n matrix with

the jkth entry given by ðFuqÞjk ¼ huqj
ffiffiffiffiffiffiffiffi
ρ⊗p
x

q
LjpLkp×ffiffiffiffiffiffiffiffi

ρ⊗p
x

q
juqi, Ljp is the SLD of ρ⊗p

x corresponding to the

parameter xj, fjuqig are any set of vectors in H⊗p
d that

satisfies
P

q juqihuqj ¼ Idp with Idp denoting the dp × dp

identity matrix.
We can also obtain additional bounds by combining

different choices of fjuqig. In particular, for mixed states
under p-local measurements we can get

Γp ≤ n −
1

4ðn − 1Þ
����Cp

p

����
2

F
; ð8Þ

where Cp is an n × n matrix with the jkth entry given by

ðCpÞjk ¼ 1
2
k

ffiffiffiffiffiffiffiffi
ρ⊗p
x

q
½L̃jp; L̃kp�

ffiffiffiffiffiffiffiffi
ρ⊗p
x

q
k1, where L̃jpðL̃kpÞ is

the SLD for ρ⊗p
x̃ with respect to the parameter x̃jðx̃kÞ,

where x̃ ¼ F1=2
Q x is a reparametrization under which

F̃Q ¼ I. Note that we always have kðCp=pÞkF ≥
kðF−1=2

Q F̄ImpF
−1=2
Q =pÞkF; the bound in Eq. (8) is thus

tighter than the bound in Eq. (7) when
fðnÞ ¼ 1=4ðn − 1Þ, but it could be less tight when fðnÞ ¼
ðn − 2Þ=ðn − 1Þ2 or 1

5
.

The bound in Eq. (8) provides a necessary condition for
the saturation of the QCRB under p-local measurements,
which is Cp=p ¼ 0. For p ¼ 1, this condition is equivalent

to the partial commutative condition. For p → ∞, we prove
that [67]

lim
p→∞

ðCpÞjk
p

¼ 1

2
jTrðρx½L̃j; L̃k�Þj: ð9Þ

At p → ∞ the condition is thus equivalent to the weak
commutative condition, Trðρx½L̃j; L̃k�Þ ¼ 0, ∀ j, k. This
builds a bridge between the partial commutative condition
and the weak commutative condition at the two extremes.
The bound in Eq. (8) involves operators on p copies of

quantum states, whose dimension grows exponentially with
p. We provide another simpler bound which only uses
operators on a single ρx as

Γp ≤ n −
1

4ðn − 1Þ
����Tp

p

����
2

F
; ð10Þ

where Tp can be computed from the eigenvalues, eigen-
vectors, and SLDs of a single ρx. Specifically, given ρx ¼P

m
i¼1 λijΨiihΨij in the eigenvalue decomposition with

λi > 0, the jkth entry of Tp is given by

ðTpÞjk ¼
1

2
E

�����
Xp
r¼1

hΦrj½L̃j; L̃k�jΦri
����
�
; ð11Þ

where Eð·Þ denotes the expected value, and each jΦri is
randomly and independently chosen from the eigenvectors
of ρx with the probability equal to the corresponding
eigenvalue; i.e., each jΦri takes jΨii with probability λi,
i ∈ f1;…; mg. L̃jðL̃kÞ is the SLD for ρx̃ with respect to

the parameter x̃jðx̃kÞ, where x̃ ¼ F1=2
Q x. The difference

between this bound and the bound in Eq. (8) is at most
Oð1= ffiffiffiffi

p
p Þ. Thus, when the bound in Eq. (8) is hard to

compute at large p, we can use this bound instead which is
almost as tight.
The upper bounds onΓp can be directly transformed to the

lower bounds on the covariance matrix. For example,
suppose a p-local measurement is repeated with μ times
(so total ν ¼ μp copies of ρx), from the classical Cramér-Rao
bound we have Covðx̂Þ ≥ ð1=μÞF−1

CpðxÞ (here the equa-
lity is achievable since the classical Cramér-Rao bound is
saturable). This implies that ð1=μÞCov−1ðx̂Þ ≤ FCpðxÞ.
Any upper bound, Γp ≤ D, then leads to an upper bound
on ð1=νÞTr½F−1

Q Cov−1ðx̂Þ� as ð1=νÞTr½F−1
Q Cov−1ðx̂Þ� ≤

TrðF−1
QpFCpÞ ≤ D (note FQp ¼ pFQ). From the Cathy-

Schwartz inequality, Tr½WCovðx̂Þ�Tr½F−1
Q Cov−1ðx̂Þ� ≥

ðTr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F−1=2
Q WF−1=2

Q

q
Þ2, we then obtain

νTr½WCovðx̂Þ� ≥
ðTr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F−1=2
Q WF−1=2

Q

q
Þ2

D
: ð12Þ
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By substitutingDwith any of the upper bounds TrðF−1
Q FCPÞ

obtained above, we then get analytical bounds on the
weighted covariance matrix.
In summary, we provided a framework to quantify

the difference between the quantum and classical Fisher
information metric under hierarchical quantum measure-
ments. The framework provides a systematic way to
generate bounds on the achievable CFIM for general
quantum states under general measurements, which sig-
nificantly improves our understanding on the Fisher
information geometry under hierarchical quantum mea-
surements. A necessary condition for the zero gap between
the quantum and classical Fisher metric has also been
identified, which is shown to recover the partial commu-
tative condition at p ¼ 1 and the weak commutative
condition at p → ∞. The result can be directly transformed
to the precision limits in multiparameter quantum metrol-
ogy and have implications in various other fields
[18,33,70]. The detailed derivation can be found in the
companion paper [67], which also contains additional
bounds that can be obtained with the framework.
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