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The Heisenberg scaling, which scales as N−1 in terms of the number of particles or T−1 in terms of the
evolution time, serves as a fundamental limit in quantum metrology. Better scalings, dubbed as “super-
Heisenberg scaling,” however, can also arise when the generator of the parameter involves many-body
interactions or when it is time dependent. All these different scalings can actually be seen as manifestations
of the Heisenberg uncertainty relations. While there is only one best scaling in the single-parameter
quantum metrology, different scalings can coexist for the estimation of multiple parameters, which can be
characterized by multiple Heisenberg uncertainty relations. We demonstrate the coexistence of two
different scalings via the simultaneous estimation of the magnitude and frequency of a field where the best
precisions, characterized by two Heisenberg uncertainty relations, scale as T−1 and T−2, respectively (in
terms of the standard deviation). We show that the simultaneous saturation of two Heisenberg uncertainty
relations can be achieved by the optimal protocol, which prepares the optimal probe state, implements the
optimal control, and performs the optimal measurement. The optimal protocol is experimentally
implemented on an optical platform that demonstrates the saturation of the two Heisenberg uncertainty
relations simultaneously, with up to five controls. As the first demonstration of simultaneously achieving
two different Heisenberg scalings, our study deepens the understanding on the connection between the
precision limit and the uncertainty relations, which has wide implications in practical applications of
multiparameter quantum estimation.
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Introduction.—The precision limit is fundamentally con-
strained by the resources, which are typically characterized
by the number of probes (N) or the time (T). The optimal
precision of classical strategies typically scales as 1=

ffiffiffiffi
N

p
or

1=
ffiffiffiffi
T

p
(in terms of the standard deviation) [1–5]. This is

called the shot-noise limit [3,4,6].Byexploiting thequantum
mechanical effects, such as superposition and entanglement,
quantum metrology can achieve a precision that scales as
1=N or 1=T [7–20]. This is known as theHeisenberg scaling.
With many-body interactions or time-dependent evolutions,
however, it is possible to achieve precisions that scale as
1=Nk with k > 1 [21–31] or even exponentially [22]. This
has been dubbed as super-Heisenberg scalings [21,23].
There has been some dispute about whether the super-
Heisenberg scaling is really “super-Heisenberg” [22,24].
In [22], it has been shown that from the perspective of the
query complexity the super-Heisenberg scalings are actually
Heisenberg. This, both theoretically [21,22,26,30,31] and
experimentally [23,25,27–29], has been restricted to the
single-parameter quantum estimation so far, where there is
only one optimal scaling.

Irrespective of the scaling, the precision limit can
actually be characterized via the Heisenberg uncertainty
relation, which justifies the name of the Heisenberg scaling.
In the multiparameter quantum estimation [32–57], the
best precision limits of different parameters can have
different scalings, which can be characterized by different
Heisenberg uncertainty relations. The interplay of multiple
uncertainty relations, however, is little understood. Here
we study the simultaneous saturation of two Heisenberg
uncertainty relations related to the estimation of the
amplitude and the frequency of a rotating magnetic field.
By exploring the connections between the precision limits
and the Heisenberg uncertainty relations, we show that it is
possible to saturate the two uncertainty relations simulta-
neously, thus achieving two different scalings at the same
time. This is achieved through the identification of the
optimal probe state, the optimal controls employed during
the evolution, and the optimal measurement on the evolved
state. The identified optimal protocol provides the ultimate
precision for the estimation of the two parameters simulta-
neously. We implement the protocol on an optical platform
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and demonstrate the achievement of two different
Heisenberg scalings simultaneously, with the precision
of the estimation for the amplitude scaling as 1=T and
the precision for the frequency scaling as 1=T2.
Precision limit characterized by the Heisenberg

uncertainty relation.—The precision in quantum metrology
is typically characterized by the quantum Cramer-Rao
bound, a tool generalized from the classical statistics.
This statistical tool, however, lacks a direct physical
picture. A more fundamental tool is the Heisenberg
uncertainty relation [58]. The connection between the
precision limit and the uncertainty relation, however, has
only received limited attention, mainly for the estimation of
a single parameter x in the Hamiltonian of the form
xH [59], where H is a parameter-independent Hermitian
operator. We first illustrate this connection for the general
unitary evolution and show that the achievement of the
highest precisions for multiple parameters is equivalent to
the saturation of multiple Heisenberg uncertainty relations
simultaneously.
To estimate a parameter x encoded in a general unitary

Ux, we can prepare an initial probe state jΨ0i and let it
evolve under the unitary to get jΨxi ¼ UxjΨ0i. The value
of the parameter can then be estimated via proper meas-
urement on the output state, described by an observableOx.
The precision of the estimation can then be quantified
through the error propagation as

δxest ¼ ΔOx=j∂xhOxij; ð1Þ

hereΔOx¼
ffiffiffiffiffiffiffiffiffiffi
ΔO2

x

p
withΔO2

x¼hΨxjO2
xjΨxi−hΨxjOxjΨxi2,

hOxi ¼ hΨxjOxjΨxi, and δxest ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðxest − xÞ2�

p
is the

standard deviation of the estimator.
Let hx ¼ ið∂xUxÞU†

x as the generator of the para-
meter [10,26,60,61], which plays a similar role as the
Hamiltonian in Schrödinger’s equation as ∂xjΨxi ¼
−ihxjΨxi and from ∂xðUxU

†
xÞ ¼ 0, it is also easy to see

that hx ¼ h†x. We then have

∂xhOxi ¼ ihΨxj½hx;Ox�jΨxi: ð2Þ

From the Heisenberg uncertainty relation [58,59]

ΔOxΔhx ≥
1

2
jhΨxj½hx;Ox�jΨxij ð3Þ

and the connection between δxest and Ox in Eq. (1), we can
immediately get

δxestΔhx ≥
1

2
; ð4Þ

which leads to the bound on the precision as
δxest ≥ ð1=2ΔhxÞ. The optimal observable that saturates
Eq. (3) should satisfy

ðhx − hhxiÞjΨxi ¼ iγðOx − hOxiÞjΨxi: ð5Þ

We note that the time-energy uncertainty relation can be
seen as a special example when x is taken as the time.
To achieve the minimum δxest, we should (1) find the

probe state that maximizes Δh2x and (2) find the observable
that saturates Eq. (3). For single-parameter quantum
estimation, these conditions can always be satisfied to
saturate one Heisenberg uncertainty relation. To achieve the
best precisions for multiple parameters, however, multiple
Heisenberg uncertainty relations need to be saturated,
which may not be always possible.
Here we consider the simultaneous estimation of the

amplitude and the frequency of a rotating magnetic field,
where the interaction of the field with a probe spin can be
described by the Hamiltonian

HðtÞ ¼ −BðtÞ · σ ¼ −BðcosωtσX þ sinωtσZÞ; ð6Þ

where B denotes the magnitude of the field and ω denotes
the frequency of the rotation. The estimation of B or ω
separately has been studied in the single-parameter esti-
mation, where it has been shown that the best precision of B
scales as 1=ð2TÞ and the best precision of ω scales as
1=ðBT2Þ [26]. It is, however, not clear whether such
precisions can be achieved simultaneously. The simulta-
neous achievement of these precisions requires the exist-
ence of (1) the same optimal probe state, (2) the same
optimal control, and (3) compatible optimal measurements
for both parameters.
To ease the identification of the optimal probe state, we

calculate the variance of the generator in the Heisenberg
picture as Δ½hHx ðTÞ�2jΨ0i ¼ Δ½hxðTÞ�2jΨxi, here hHx ðTÞ ¼
U†

xðTÞhxUxðTÞ ¼ iU†
xðTÞ∂xUxðTÞwithUxðTÞ as the gene-

rated unitary operator acting on the probe state. At any
given time T the generator can be obtained as [60–62]

hHx ðTÞ ¼
Z

T

0

U†
xð0 → tÞ∂xHðtÞUxð0 → tÞdt: ð7Þ

For the parameter B, we have ∂BHðtÞ ¼ −ðcosωtσX þ
sinωtσZÞ and for ω we have ∂ωHðtÞ ¼ BtðsinωtσX−
cosωtσZÞ. To understand the evolution of the generators
in a geometrical way, we use the Bloch representation to
write the generator at time T as hHx ðTÞ ¼ SxðTÞ · σ and
write U†

xð0→ tÞ∂xHðtÞUxð0→ tÞ¼VxðtÞ ·σ. Specifically,
SxðTÞ can be viewed as the accumulated displacement at
time T and VxðtÞ can be viewed as the instantaneous
velocity with SH

x ðTÞ ¼
R
T
0 VxðtÞdt. The largest standard

deviation of the generator is upper bounded by the norm of
jSH

x ðTÞj as
ΔhHx ðTÞ ≤ jSH

x ðTÞj; ð8Þ
and the norm of jSH

x ðTÞj is further upper bounded as
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jSH
x ðTÞj ≤

Z
T

0

jVxðtÞjdt ¼
Z

T

0

j∂xHðtÞjdt; ð9Þ

where the last equality we used the fact that
jU†

xð0 → tÞ∂xHðtÞUxð0 → tÞj ¼ j∂xHðtÞj. Geometrically,
this is in analogy to the fact that the displacement between
two points is always upper bounded by the length of a path
that connects them. Since j∂BHðtÞj ¼ 1 and j∂ωHðtÞj ¼
Bt, we have ΔhHB ðTÞ ≤ T and ΔhHω ðTÞ ≤ 1

2
BT2. The best

precision for the estimation of B or ω thus scales at most as
T−1 or T−2, respectively. The difference between them
originates from the difference between the norm of the
instantaneous velocity jVxðtÞj, as there is an extra t in VωðtÞ
as compared to VBðtÞ.
To achieve the best precisions, we need to saturate the

two inequalities in Eqs. (8) and (9). The inequality in
Eq. (9), however, cannot be saturated under the free
evolution in general, as it requires the instantaneous
velocity VxðtÞ aligned in the same direction during the
whole evolution, which, in general, is not the case. Thus,
under the free evolution, the scaling of T−1 and T−2 for the
estimation of B and ω cannot be achieved simultaneously.
Detailed calculation of the generators and their variances
under the free evolution can be found in the Supplemental
Material [63].
To achieve the best precision, we need to use quantum

controls to tame the dynamics so that VxðtÞ at different
time points can be aligned. This can be achieved by adding
a control term HcðtÞ to the Hamiltonian, HtotðtÞ ¼
HðtÞ þHcðtÞ. A choice of the control that can align the
velocity [26] is

HcðtÞ ¼ BcðcosωctσX þ sinωctσZÞ −
ωc

2
σY; ð10Þ

with Bc and ωc as the estimated value of B and ω,
respectively, which need to be updated adaptively with
the accumulation of the collected measurement results.
When these estimates converge to the true value, i.e., when
Bc ¼ B and ωc ¼ ω, VBðtÞ ¼ ð−1; 0; 0Þ and VωðtÞ ¼
ð0; 0;−BtÞ at different t are completely aligned under
the controlled dynamics and the best precision can then
be achieved. This can be seen by directly calculating
the generators under the controlled dynamics, which are
given by

hHB ðTÞjBc¼B;ωc¼ω ¼ −TσX; ð11Þ

hHω ðTÞjBc¼B;ωc¼ω ¼ −
1

2
BT2σZ: ð12Þ

Thus, jSH
B ðTÞj ¼ T and jSH

ω ðTÞj ¼ BT2=2, both attain the
maximal value.
The inequality in Eq. (8) can be saturated by optimizing

the initial probe state jΨ0i, which needs to be the same for
both parameters. By employing an ancillary qubit, the

optimal probe state can be taken as the maximally
entangled state jΨ0i ¼ ðj00i þ j11iÞ= ffiffiffi

2
p

, where the basis
j0i and j1i are the eigenstates of σZ with eigenvalues �1. It
is easy to verify that this state saturates the inequalities in
Eq. (8) for both parameters (see Supplemental Material
[63]). At last, the optimal observables OB and Oω that
saturate the two Heisenberg uncertainty relations associated
with the two parameters need to commute with each other
so the optimal measurements to achieve the best precision
for the two parameters are compatible. It is easy to check
that choosing the two observables in the Heisenberg picture
as OH

B ¼ σYσZ and OH
ω ¼ σXσY saturate Eq. (3) and they

commute with each other (see Supplemental Material [63]).
Thus, with the optimization of the probe state, the control,
and the measurement, the best precision for the estimation
of B and ω, which scales as T−1 and T−2, respectively, can
be achieved simultaneously.
Discrete controls.—In many physical settings, the con-

trols are discrete rather than continuous, which is the case
for our optical experiment. We thus use the discrete
controls to approximate the optimal continuous control
in the experiment. This can be achieved by dividing the
total evolution time T into n small intervals, each with a
duration δt ¼ T=n, and a control is then added after each
δt. For example, for the kth interval, the total dynamics is
given by Utot½ðk − 1Þδt → kδt� ¼ CkU½ðk − 1Þδt → kδt�,
where U½ðk − 1Þδt → kδt� represents the free evolution
during the interval, and Ck represents the added control.
We note that Utot½ðk − 1Þδt → kδt� not only depends on the
time interval δt, but also depends on the starting time
ðk − 1Þδt since the Hamiltonian is time dependent. In
our experiment, the control operation Ck for the kth interval
is generated by two operators as Ck ¼ Uc1Uc2, where
Uc1 represents the operator generated from H1 ¼
BcðcosωctσX þ sinωtσZÞ and Uc2 the operator generated
from H2 ¼ −ðωc=2ÞσX during the time interval
½ðk − 1Þδt; kδt�. The discrete control converges to the
optimal continuous control when n → ∞. We perform
the simulation of the discrete control and show that, for
the chosen evolution time, by dividing the total evolution
into five intervals, the performance is already close to the
optimal performance of the ideal optimal continuous
control (see the Supplemental Material [63]).
Experimental setup.—We implement the protocol with a

photonic system and demonstrate the simultaneous satu-
ration of the two different scalings. The experiment setup
consists of three modules: preparation, evolution, and
measurement, as shown in Fig. 1(b). In the module of
the preparation, we use the polarization of the photon as the
probe system, where the horizontal (H) and vertical (V)
polarization are taken as the basis, and the path degrees of
the photon as the ancilla, where the up and down path are
taken as the basis. We use a 40-mW H-polarized beam at
404 nm to pump a 1-mm-long BBO crystal, cut for type-I
phase-matched spontaneous parametric down-conversion
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process, to generate a heralded single photon [64] at the rate
of 3500 Hz. After passing through a beam displacer (BD), a
half-wave plate (HWP), and a quarter-wave plate (QWP),
the photon is prepared in the state ðjHi þ jViÞ= ffiffiffi

2
p

. After
passing through the second BD, the V component is
displaced to the down path and the H component remains
in the up path; this prepares the two degrees of the photon
and prepares the initial state as ðjH; downi þ jV; upiÞ= ffiffiffi

2
p

.
In the module of the evolution, the operations of the free
evolution and the control are performed on the polarization
qubit (probe), while the path qubit is unchanged (ancilla).
The free evolution (blue) during a period δt and the control
(yellow) are experimentally realized with a combination of
two QWPs and one HWP, which can be used to generate
arbitrary unitary operations on a polarization qubit. Overall,
we use ten sets of such combinations of wave plates to
generate five operators corresponding to the free evolution
and another five operators corresponding to the control
operation. In the module of the measurement, the projective
measurement on the common eigenstates of σYσZ and σXσY
are performed on the probe and ancilla qubits using two
BDs, two polarization beam splitters (PBSs), and six HWPs
with nontrivial rotation angles specified in Fig. 1(b). The
measurement results are recorded by four single-photon
counting modules (SPCMs).
Experiment result.—We demonstrate the scaling of the

precision for the estimation of B and ω with respect to the
evolution time T. In the experiment, the total T is divided
into five intervals, each with δt ¼ T=5 and a control is

added after each interval. We consider the sensitivity of the
local estimation where B and ω are within a small
neighborhood of known values. In this case, the optimal
controls can be achieved at Bc ¼ B and ωc ¼ ω. We note
that, if the values of the parameters are completely
unknown, by adaptively updating the controls with the
accumulated measurement data, the control can always
converge to the optimal ones. We implement the protocol
with 1000 photons and collect the measurement outcomes
from the four detectors. The estimators Best and ωest are
then obtained with the maximum likelihood, which max-
imizes the posterior probability based on the obtained data.
We repeat this process 200 times to get the distribution and
the standard deviations of Best and ωest. In the experiment,
we choose T ¼ 0.15 × 5k=7 with k ¼ 1; 2;…; 7; i.e., T
ranges from 0.19 to 0.75. It can be seen that the obtained
precisions (blue and red dots in Fig. 2) for the estimation of
B and ω achieve the best scaling of T−1 and T−2,
respectively, which matches the theoretical prediction.
Summary.—We experimentally achieved two different

Heisenberg scalings, T−1 and T−2, simultaneously for a
multiparameter quantum estimation through the optimal
design of the probe state, the control, and the measurement.
Our Letter not only provides the ultimate precision on the
simultaneous estimation of both the magnitude and the
frequency of a field, which has wide implications in
quantum magnetometry, quantum gyroscope, and spectro-
scope. It also deepens the connection between quantum
metrology and the Heisenberg uncertainty relations, two

(a)

(b)

FIG. 1. Control-enhanced scheme and experimental setup. (a) Control-enhanced scheme. An ancilla-assisted state 1=
ffiffiffi
2

p ðj00i þ j11iÞ
is prepared. The probe state undergoes five periods unitary evolution and five controls. (b) Experimental setup. There are three modules
in the experiment: state preparation, evolution, and measurement. The state preparation prepares probe-ancilla state ðjH; downi þ
jV; upiÞ= ffiffiffi

2
p

in the degree of polarization and path of a heralded single photon. In the evolution module, the probe qubit is operated by
the unknown U and the adaptive control Uc for n times (n ¼ 5 in the figure and experiment). In the measurement module, projective
measurements on the common eigenstates of σYσZ and σXσY are performed on the probe and ancilla to extract information of U. β-
barium borate (BBO).
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fields that have been developed without sufficient crosses
[65]. Our results strengthen the connections that shed light
on the studies of both fields.
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Smerzi, and F. Sciarrino, Sci. Rep. 6, 28881 (2016).

[52] E. Roccia, I. Gianani, L. Mancino, M. Sbroscia, F. Somma,
M. G. Genoni, and M. Barbieri, Quantum Sci. Technol. 3,
01LT01 (2018).

[53] Z. Hou, J.-F. Tang, J. Shang, H. Zhu, J. Li, Y. Yuan, K.-D.
Wu, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, Nat. Commun. 9,
1414 (2018).

[54] E. Polino, M. Riva, M. Valeri, R. Silvestri, G. Corrielli, A.
Crespi, N. Spagnolo, R. Osellame, and F. Sciarrino, Optica
6, 288 (2019).

[55] F. Albarelli, M. Barbieri, M. G. Genoni, and I. Gianani,
Phys. Lett. A 384, 126311 (2020).

[56] H. Chen and H. Yuan, Phys. Rev. A 99, 032122 (2019).
[57] J. Liu, H. Yuan, X.-M. Lu, and X. Wang, J. Phys. A 53,

023001 (2020).
[58] W. Heisenberg, Z. Phys. 43, 172 (1927).
[59] S. L. Braunstein, C. M. Caves, and G. J. Milburn, Ann.

Phys. (N.Y.) 247, 135 (1996).
[60] S. Pang and T. A. Brun, Phys. Rev. A 90, 022117 (2014).
[61] D. Brody and E.-M. Graefe, Entropy 15, 3361 (2013).
[62] A. Wilce, arXiv:0912.5530.
[63] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.126.070503 for detai-
led analysis of the optimality of the protocol.

[64] P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H.
Eberhard, Phys. Rev. A 60, R773 (1999).

[65] Z. Hou, J.-F. Tang, H. Chen, H. Yuan, G.-Y. Xiang, C.-F. Li,
and G.-C. Guo, Sci. Adv. 7, eabd2986 (2021).

PHYSICAL REVIEW LETTERS 126, 070503 (2021)

070503-6

https://doi.org/10.1088/1751-8113/40/16/009
https://doi.org/10.1103/PhysRevA.70.032310
https://doi.org/10.1103/PhysRevA.89.023845
https://doi.org/10.1103/PhysRevLett.111.070403
https://doi.org/10.1038/srep08565
https://doi.org/10.1088/2058-9565/aa6fea
https://doi.org/10.1088/2058-9565/aa6fea
https://doi.org/10.1103/PhysRevLett.116.030801
https://doi.org/10.1103/PhysRevLett.116.030801
https://doi.org/10.1080/23746149.2016.1230476
https://doi.org/10.1080/23746149.2016.1230476
https://doi.org/10.1103/PhysRevLett.117.160801
https://doi.org/10.1088/1367-2630/aa723d
https://doi.org/10.1103/PhysRevA.94.052108
https://doi.org/10.1103/PhysRevA.94.052108
https://doi.org/10.1038/ncomms4532
https://doi.org/10.1103/PhysRevA.61.042312
https://doi.org/10.1103/PhysRevA.61.042312
https://doi.org/10.1103/PhysRevLett.97.130501
https://doi.org/10.1103/PhysRevLett.116.180402
https://doi.org/10.1103/PhysRevLett.120.030404
https://doi.org/10.1103/PhysRevLett.120.030404
https://doi.org/10.1103/PhysRevLett.125.020501
https://doi.org/10.1364/OPTICA.2.000510
https://doi.org/10.1038/srep28881
https://doi.org/10.1088/2058-9565/aa9212
https://doi.org/10.1088/2058-9565/aa9212
https://doi.org/10.1038/s41467-018-03849-x
https://doi.org/10.1038/s41467-018-03849-x
https://doi.org/10.1364/OPTICA.6.000288
https://doi.org/10.1364/OPTICA.6.000288
https://doi.org/10.1016/j.physleta.2020.126311
https://doi.org/10.1103/PhysRevA.99.032122
https://doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1007/BF01397280
https://doi.org/10.1006/aphy.1996.0040
https://doi.org/10.1006/aphy.1996.0040
https://doi.org/10.1103/PhysRevA.90.022117
https://doi.org/10.3390/e15093361
https://arXiv.org/abs/0912.5530
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.070503
https://doi.org/10.1103/PhysRevA.60.R773
https://doi.org/10.1126/sciadv.abd2986

