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Optimal Scheme for Quantum Metrology

Jing Liu,* Mao Zhang, Hongzhen Chen, Lingna Wang, and Haidong Yuan*

Quantum metrology can achieve far better precision than classical metrology,
and is one of the most important applications of quantum technologies in the
real world. To attain the highest precision promised by quantum metrology, all
steps of the schemes need to be optimized, which include the state
preparation, parametrization, and measurement. Here the recent progresses
on the optimization of these steps, which are essential for the identification
and achievement of the ultimate precision limit in quantum metrology, are
reviewed. It is hoped this provides a useful reference for the researchers in
quantum metrology and related fields.

1. Introduction

Metrology, which studies the precision limit of measurement
and estimation, plays a central role in science and technol-
ogy. Recently quantum metrology, which exploits quantum
mechanical effects to achieve far better precision than clas-
sical schemes,[1–22] has gained increasing attention and has
found wide applications in various fields, such as gravita-
tional wavedetection,[19,23–27] quantum phase estimation,[5,28–31]

quantum magnetometer,[32,33] quantum ranging,[34–36] quan-
tum spectroscopy,[37–40] quantum imaging,[41–47] quantum target-
detection,[48,49] quantum gyroscope,[50,51] distributed quantum
sensing,[52–54] atomic clocksynchronization,[55–61] and even bio-
logical measurements.[62]

A central task in quantummetrology is to identify the ultimate
precision limit that can be achieved with given resources and de-
sign schemes to attain it. In the finite regime where the number
of the measurement is limited, this is usually a hard task. When
one does not have sufficient prior information of the parameter,
this is a “global” problem in the sense that the chosen cost func-
tion need to be minimized over a certain region. This is often
handled by minimizing the mean of the cost function or mini-
mizing the worst case over the region[63–65] for which the optimal
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scheme is only known for very symmetric
cases.[66–70] The task is much simpler when
the number of the measurement can be
asymptotically large, in this case the value
of the parameter can be pinpointed asymp-
totically and the “global” problem becomes
“local.” In this regime, a well-behaviored
cost function can be approximated by the
variance, which corresponds to the sec-
ond order expansion of the cost function
around the true value, and the local preci-
sion limit can be quantified by the quantum
Cramér–Rao bound.[1,2] The studies on the
optimal schemes for the single-parameter

estimation in the asymptotic limit have made much progress re-
cently, which will be the focus of this review. For the progresses
on the multi-parameter estimation, we refer the readers to the
recent reviews.[39,71–73]

A general protocol of quantum metrology typically consists of
four steps: 1) preparation; 2) parameterization; 3) measurement,
and 4) estimation, as illustrated in Figure 1. To achieve the best
precision, all steps need to be optimized. The optimization of
the last step is a well-studied subject in the classical statistics,
in this review, we will focus on the optimization of the first three
steps (quantum part), denoted as “ppm.”[74] Interestingly, ”ppm”
is also one of the most well-used pseudo-units in the field of pre-
cision measurements, standing for one part per million. In Sec-
tion 2, we first review the quantum dynamics and the quantum
Cramér–Rao bound, which are the main tools used to quantify
the precision limit of the single-parameter quantum estimation.
Sections 3–5 focus on the current development on the optimiza-
tions of the first three steps. Specifically, in Section 3, we review
the progresses on the optimization of the initial probe states. In
Section 4, we review the progresses on the optimization of the
parametrization, which we mainly focus on the quantum control
and quantum error correction. In Section 5, we review the opti-
mization of the measurement, mainly on the local adaptive mea-
surements, which is practically easier to implement. We make a
summary in Section 6.

2. Quantum Dynamics and Metrological Bounds

2.1. Quantum Dynamics

Quantum dynamics is the foundation of quantum informa-
tion, and even quantum mechanics. For an isolated quantum
system, the dynamics is depicted by the Schrödinger equation
𝜕t|𝜓⟩ = −iH|𝜓⟩ for quantum state |𝜓⟩ or Liouville equation
𝜕t𝜌 = −i[H, 𝜌] for density matrix 𝜌. Here H is the Hamiltonian.
The solution for this equation is 𝜌(t) = U(t)𝜌inU

†(t) with U(t) =
 exp(−i ∫ t

0 H(𝜏)d𝜏) a unitary operator.  is the time-ordering op-
erator. It reduces to exp(−iHt) if H is time-independent. If the
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Figure 1. The schematic for a general process of quantum parameter es-
timation, which includes four steps: 1) preparation; 2) parameterization;
3) measurement; and 4) classical estimation. The first three steps (“ppm”
steps) are the major subjects in quantum metrology.

noise is involved, the evolution is then not unitary. Two typical
approaches to depict the noisy dynamics are the integral and dif-
ferential methods. The most widely used integral method is the
Kraus representation, which can model general completely pos-
itive and trace-preserving maps, and thereby a routine analytical
representation for the integrated quantum dynamics, which acts
as quantum channels on the probe states. In this representation,
the output state of a quantum channel (⋅), with the initial probe
state as 𝜌in, can be described as

(𝜌in) =
m∑
j=1

Kj𝜌inK
†
j (1)

where Kj is a Kraus operator satisfying
∑

j K
†
j Kj = I with I the

identity operator. Note that given a quantum channel, the associ-
ated Kraus operators are not unique. Any isometry, which satis-
fies V†V = Im with V ∈ ℂp×m (p ≥ m), can lead to an equivalent
set of Kraus operators as K̃j =

∑
i vjiKi with vji the jith entry of V .

Such equivalent Kraus operators can be obtained by first append-
ing p −m zero operators as {K1,… , Km, 0,… , 0}, thenmaking an
equivalent unitary transformation on these expanded operators,
K̃j =

∑
i vjiKi, here vji are the entries of the first m columns of a

p × p unitary matrix (the entries of the remaining p −m columns
do not appear as they act on the zero operators).
The dynamics can also be described with the differential equa-

tions. A widely used form that describes theMarkovian dynamics
is the master equation

𝜕t𝜌 = −i[H, 𝜌] +
∑
k

(
Γk𝜌Γ

†
k −

1
2
{Γ†

kΓk, 𝜌}
)

(2)

where Γk is the kth Lindblad operator.

2.2. Quantum Cramér–Rao Bounds

To estimate the value of a parameter, xtrue, from certain amount
of data that is sampled from a conditional probability distribution

that depends on the parameter—we use p(y|x) to denote the con-
ditional probability of event y given x, the Cramér–Rao bound
provides an asymptotically achievable lower bound on the vari-
ance of any locally unbiased estimators as [75, 76]

var(x̂) ≥ 1
nIx

(3)

here x̂ is a locally unbiased estimator which satisfies E(x̂) = xtrue,
d
dx
E(x̂)|xtrue = 1, var(x̂) = E[(x̂ − E(x̂))2] is the variance of the esti-

mator, n is the number of sampled data and

Ix = ∫y

[𝜕xp(y|x)]2
p(y|x) dy (4)

is the Fisher information.[77] For multiple unknown parameters

x = (x0, x1,… , xm)
T (5)

the counterpart of the variance is the covariance matrix cov(x̂),
where the jk-th entry is given by

[
cov(x̂)

]
jk
=∫y

p(y|x)[x̂j−E(x̂j)][x̂k−E(x̂k)]dy (6)

with x̂j(k) as the locally unbiased estimator for xj(k). It is easy to see
that the diagonal entries of the covariancematrix are just the vari-
ances for the corresponding parameters. The mutli-parameter
Cramér–Rao bound is given by

cov(x̂) ≥ 1
n
I−1x (7)

where Ix is now the Fisher informationmatrix with the jk-th entry
given by

(Ix)jk = ∫y

𝜕xj p(y|x)𝜕xkp(y|x)
p(y|x) dy (8)

The Cramér–Rao bound can be achieved asymptotically when
n → ∞.
In quantum parameter estimation, the data is obtained from

the measurements on the quantum state, 𝜌(x), which depends
on the unknown parameter. The most general measurement
in quantum mechanics is the positive operator-valued measure
(POVM), which can be described by a set of positive semidefi-
nite operators, {Πi}, that satisfies

∑
i Πi = I. The probability of

the measurement result, p(i|x), which for simplicity we also de-
note as pi(x), can be obtained as pi(x) = Tr[𝜌(x)Πi]. From which
we can get the Fisher information

Ix =
∑
i

[𝜕xpi(x)]
2

pi(x)
(9)

The quantum Fisher information (QFI),[1,2] denoted as Fx, cor-
responds to the maximal of the Fisher information over all
POVMs,

Fx = max
{Πi}

Ix({Πi}) (10)
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This leads to the quantum Cramér–Rao bound as

var(x̂) ≥ 1
nFx

(11)

which is asymptotically achievable in the case of the single-
parameter estimation.
For multiple parameters, the quantum Cramér–Rao bound is

given by

cov(x̂) ≥ 1
n
−1 (12)

where  is now the quantum Fisher information matrix (QFIM).
The entries of the QFIM can be obtained as

jk =
1
2
Tr(𝜌

{
Lj, Lk

}
) (13)

where Lj is the symmetric logarithmic derivative (SLD) cor-
responding to the parameter xj, which is the solution to the
equation 𝜕xj𝜌 = 1

2
(𝜌Lj + Lj𝜌), {Lj, Lk} = LjLk + LkLj is the anti-

commutator. In the case of the single-parameter estimation, the
QFIM reduces to the QFI, which is a scalar given by

Fx = Tr
(
𝜌L2x

)
(14)

where Lx is the SLD for the single parameter x. For single-
parameter estimation, the quantum Cramér–Rao bound can be
saturated by the projective measurement on the eigenvectors of
the SLD and the maximum likelihood estimations,[1–3] while the
multi-parameter quantum Cramér–Rao bound is in general not
attainable due to the incompatibility of the optimal measure-
ments for different parameters.
The quantum Fisher information is closely related to the ge-

ometry of the quantum states. In particular, it is closely related to
the fidelity, an important concept for the distinguishment of two
quantum states. A widely used form of the fidelity between two

quantum states, 𝜌1 and 𝜌2, is f (𝜌1, 𝜌2) := Tr
√√

𝜌1𝜌2
√
𝜌1.

[78,79]

This leads to a distance measure on quantum states as

D(𝜌1, 𝜌2) :=
√
2 − 2f (𝜌1, 𝜌2) (15)

which is referred to as the Bures distance. The fidelity can also
be used to define the Bures angle as Θ(𝜌1, 𝜌2) = arccos f (𝜌1, 𝜌2),
which is also a valid metric on the state space. The QFI is propor-
tional to the second order expansion of the Bures distance,[6] that
is, up to the second order of dx

D(𝜌x, 𝜌x+dx) =
1
4
Fx(𝜌x)d

2x (16)

which shows that the QFI is nothing but the fidelity suscepti-
bility (ignoring the constant). A rigorous proof of this relation
for arbitrary-rank density matrices can be found in refs. [39, 80]
when the support is fixed.
The connection between the fidelity and the Fisher informa-

tion can be generalized to quantum channels.[81] Specifically
given two quantum channels (the number of the Kraus opera-
tors for both channels, denoted asm, are assumed to be the same

as we can always append zero operators if they are not the same
initially),

1(𝜌) =
m∑
i=1

K1,i𝜌K
†
1,i

2(𝜌) =
m∑
i=1

K2,i𝜌K
†
2,i

(17)

the fidelity between two channels is given by [81]

fqc(1, 2) = max‖W‖op≤1
1
2
𝜆min( +†) (18)

where 𝜆min( +†) denotes theminimum eigenvalue of +†

with  =
∑

ij wijK
†
1,iK2,j, wij is the ijth entry of any matrix, W,

that satisfies ‖W‖op ≤ 1 with ‖ ⋅ ‖op denoting the operator norm
which equals to the largest singular value. Here W comes from
the non-uniqueness of the Kraus representation for a quantum
channel. Basically, given the equivalent Kraus operators, K̃1,q =∑

i[V1]qiK1,i and K̃2,q =
∑

i[V2]qiK2,i, with V1, V2 ∈ ℂp×m as isome-
tries, we have

∑
q K̃

†
1,qK̃2,q =

∑
ij wijK

†
1,iK2,j where wij are entries of

W = V†
1V2 with ‖W‖op ≤ ‖V†

1‖op‖V2‖op = 1, that is,

max‖W‖op≤1
1
2
𝜆min( +†)

= max
{K̃1,q},{K̃2,q}

1
2
𝜆min

(∑
q

K̃†
1,qK̃2,q + K̃†

2,qK̃1,q

)
(19)

The fidelity on quantum channels can be efficiently computed
through the semidefinite programming as

fqc =max 1
2
y

s.t.

⎧⎪⎨⎪⎩
(
I W†

W I

)
≥ 0,

 +† − yI ≥ 0
(20)

Similar as the Bures distance on quantum states, we can define
the Bures distance on quantum channels as

Dqc(1, 2) =
√
2 − 2fqc(1, 2) (21)

The Bures distance on quantum channels corresponds to the
minimal operator distance among the equivalent Kraus opera-
tors of the quantum channels as

min
{K̃1,q},{K̃2,q}

‖‖‖‖‖‖
∑
q

(K̃1,q − K̃2,q)
†(K̃1,q − K̃2,q)

‖‖‖‖‖‖op
= 2 − max

{K̃1,q},{K̃2,q}
𝜆min

(∑
q

K̃†
1,qK̃2,q + K̃†

2,qK̃1,q

)
= 2 − 2fqc(1, 2) (22)
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The quantum channels can be equivalently represented as
i(𝜌S) = TrE(UES,i(|0E⟩⟨0E|⊗ 𝜌S)U

†
ES,i), where |0E⟩ denotes some

standard state of the environment, and UES,i is a unitary opera-
tor acting on both the system and environment, which is called
the unitary extension of i. Similar to the Uhlmann’s purification
on quantum states,[82] the fidelity function on quantum channels
also satisfies

fqc(1, 2) = max
UES,1

fqc(UES,1, UES,2) (23)

= max
UES,2

fqc(UES,1, UES,2) (24)

Operationally the fidelity between quantum channels equals
to the minimal fidelity between the output states of the extended
channels as [81, 83, 84]

fqc(1, 2) = min
𝜌SA

f [1 ⊗ I(𝜌SA), 2 ⊗ I(𝜌SA)] (25)

where 𝜌SA denotes a state on the system+ancilla, and I is the iden-
tity operator on the ancillary system. This can be seen as an exten-
sion of the operational meaning of the fidelity between quantum
states, which equals to the minimal classical fidelity between the
probability distributions of the measurement result as

f (𝜌1, 𝜌2) = min
{Ei}

fcl(p1, p2) (26)

where fcl(p1, p2) =
∑

i

√
p1,ip2,i is the classical fidelity with p1,i =

Tr(𝜌1Πi) and p2,i = Tr(𝜌2Πi). It is also known as Bhattacharyya
coefficient.[85]

The Bures angle can also be extended to the quantum channels
as

Θqc(1, 2) = arccos fqc(1, 2) (27)

The corresponding quantum channel Fisher information, which
is the maximal quantum Fisher information over all input states
of the extended channel x ⊗ I, can be related to the Bures angle
as

Fqc,x = lim
𝛿x→0

4Θ2
qc(x, x+𝛿x)

𝛿x2
(28)

We then have a hierarchy of the Fisher information as

Ix(px) = lim
𝛿x→0

4Θ2
cl(px, px+𝛿x)

𝛿x2
(29)

Fx(𝜌x) = lim
𝛿x→0

4Θ2(𝜌x, 𝜌x+𝛿x)
𝛿x2

(30)

Fqc,x(x) = lim
𝛿x→0

4Θ2
qc(x, x+𝛿x)

𝛿x2
(31)

where Θcl(px, px+𝛿x) = arccos fcl(px, px+𝛿x) can be interpreted as
the Bures angle between classical probabilities andΘ(𝜌x, 𝜌x+𝛿x) =
arccos f (𝜌x, 𝜌x+𝛿x) is the Bures angle between quantum states.

Figure 2. A unified framework for the discriminations of classical prob-
ability distributions, quantum states, and quantum channels; here,
fcl(p1, p2) =

∑
i
√
p1ip2i with p1i = Tr(𝜌1Πi), and p2i = Tr(𝜌2Πi), f (𝜌1, 𝜌2) =

Tr
√√

𝜌1𝜌2
√
𝜌1, and fqc = max‖W‖op≤1 1

2
𝜆min( +†) as given in Equa-

tion (18), Θcl = arccos fcl, Θ = arccos f , Θqc = arccos fqc, and the corre-
sponding Fisher information Ix , Fx and Fqc,x are given in Equations (29),
(30), and (28), respectively. The quantities associated with the quantum
states equal to the optimal value of the corresponding quantities on the
classical probability distribution after the optimization of the measure-
ment, and the quantities on quantum channels equal to the optimal value
of the corresponding quantities on quantum states after the optimization
of the initial probe states.

This is summarized in Figure 2, in which the quantities on quan-
tum states equal to the corresponding quantities on the probabil-
ity distribution over the optimization of the measurement and
the quantities on the quantum channels equal to the correspond-
ing quantities on quantum states over the optimization of the
input states.
This is based on the purification approach developed in refs.

[8, 9, 11, 12, 86, 87], which focus on the neighboring channels
that are relevant to the local precision limit. Given a quantum
channel x(𝜌) = ∑

i Ki(x)𝜌K
†
i (x), the QFI, in terms of the initial

probe state and the Kraus operators, can be written as

Fx = min
{K̃j}

CF(𝜌in, {K̃j}) (32)

where CF = 4(⟨G1⟩in − ⟨G2⟩2in), 𝜌in is the input probe state of the
system (or the system+ancilla) and ⟨G1(2)⟩in := Tr(G1(2)𝜌in) with

G1=
∑
j

(𝜕xK̃
†
j )(𝜕xK̃j), G2 = i

∑
j

(𝜕xK̃
†
j )K̃j (33)

Here {K̃j} is a set of equivalent Kraus operators of the chan-
nel. The channel Fisher information, after optimizing 𝜌in on the
system+ancilla, is given by

Fqc,x = max
{K̃j}

‖G1‖op (34)

This expression of the channel QFI is equivalent to the channel
QFI in Equation (28).[84] By restricting the equivalent transforma-
tion of the Kraus operators to unitary transformation, that is, K̃j =∑

p vjpKp with V (with the jp-th entry as vjp) as unitary instead of
isometry, alternative semi-definite programming that computes
the channel QFI in Equation (34) has also been developed.[12,87]
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If the channel is usedN times, it can be shown that for any input
state, the QFI is upper bounded by[8, 9, 11, 12, 87]

4min
{K̃j}

[N‖G1‖op + N(N − 1)‖G2‖op(‖G1‖op + ‖G2‖op + 1)] (35)

The precision then cannot achieve the Heisenberg limit if there
exists {K̃j} such that G2 = 0.

3. State Optimization

The state optimization is the first step in the design of optimal
schemes for quantummetrology. In the asymptotic regime, a nat-
ural target function for the optimization is the QFI, or the Fisher
information when the measurement is fixed. Both analytical and
numerical methods have been used in the state optimization. If
the system is simple or possesses some special properties that
can facilitate the optimization, the analytical approaches can be
applied. For general complex systems numerical methods typi-
cally need to be employed.
Given a quantum channel, x, the optimal state that achieves

the channel QFI, or equivalently the optimal state that saturates
the channel fidelity, fqc(x, x+𝛿x), can be obtained through the
dual optimization of the problem in Equation (20).[88] Specifically,
given x(𝜌) = ∑m

i=1 Ki(x)𝜌K
†
i (x), we can define a quantummetrol-

ogy matrix,M, which is a m ×mmatrix with the ijth entry given
by

Mij(x1, x2) := ⟨𝜓SA|Ki(x1)Kj(x2)|𝜓SA⟩ (36)

where |𝜓SA⟩ is the initial probe state of the system+ancilla and

⟨𝜓SA|Ki(x1)Kj(x2)|𝜓SA⟩ = Tr[𝜌sKi(x1)Kj(x2)] (37)

with 𝜌s = TrA(|𝜓SA⟩⟨𝜓SA|). Given any pure input state the fidelity
between the output states of two extended channel, 𝜌x1 = x1 ⊗
I(|𝜓SA⟩⟨𝜓SA|) and 𝜌x2 = x2 ⊗ I(|𝜓SA⟩⟨𝜓SA|), equals to the trace
norm of the quantum metrology matrix, that is,

f (𝜌x1 , 𝜌x1 ) = Tr
√√

𝜌x1𝜌x2

√
𝜌x1 = ‖‖M(x1, x2)‖‖tr (38)

here ‖M(x1, x2)‖tr := Tr
√
MM†, which equals to the sum of sin-

gular values of M. The QFI of the output state can then be ob-
tained as

Fx = lim
𝛿x→0

8
(
1 − ‖‖M(x, x + 𝛿x)‖‖tr)

𝛿x2
(39)

The trace norm of a matrix can be efficiently calculated via the
semidefinite programming as[88]

‖M‖tr = min 1
2
Tr(P +Q),

s.t.
(
P M†

M Q

)
≥ 0 (40)

where P,Q are two Hermitian matrices. With the above formula-
tion, the optimal state can then be obtained byminimizing ‖M‖tr

through the following semi-definite programming

min
𝜌s

‖M‖tr =min 1
2
Tr(P +Q),

s.t.

⎧⎪⎨⎪⎩
(
P M†

M Q

)
≥ 0,

𝜌s ≥ 0,
Tr(𝜌s) = 1

(41)

Any |𝜓SA⟩ that has the reduced state equals to 𝜌s outputed
from the semi-definite programming is an optimal probe state.
This semi-definite programming is exactly the dual of the semi-
definite programming in Equation (20) and strong duality holds,
the optimal values of both semi-definite programming give the
channel fidelity.
The fact that the initial state enters M linearly is essential

for the formulation of the semi-definite programming in Equa-
tion (41). As a contrast, if the fidelity is calculated directly as

f = Tr
√√

𝜌x1𝜌x2

√
𝜌x1 (42)

with 𝜌x = x ⊗ I(|𝜓SA⟩⟨𝜓SA|), the initial state then enters in
quadratically, for which the optimization of the probe state can-
not be computed directly with the semi-definite programming.
The formula in Equation (39) also holds without the ancillary

system when the input state is a pure state, |𝜓s⟩. If the optimal
value in Equation (41) can be attained with a pure 𝜌s, it then in-
dicates that the channel QFI can be achieved without the ancil-
lary system, that is, the ancillary system does not help improve
the precision in this case. This can happen if all the operators
K†
i (x1)Kj(x2) commute with each other,[88] that is,[
K†
i (x1)Kj(x2), K

†
p (x1)Kl(x2)

]
= 0 (43)

for any subscript i, j, p, l, for such channels the optimal value in
Equation (41) can always be attained with a pure 𝜌s,

[88] the an-
cillary system thus does not help improve the precision limit. In
particular, the unitary channel, the phase estimation with the de-
phasing noise along the same direction or the phase estimation
along the Z direction with the noises along the X and Y direc-
tions, all satisfy this condition, hence the ancillary system does
not help improve the precision limit for these channels in the
case of single-parameter estimation.[88] For example, for the de-
phasing channel

x(⋅) = K1(⋅)K1 + K2(⋅)K2 (44)

with K1 =
√
pe−ix𝜎z and K2 =

√
1 − p𝜎ze

−ix𝜎z , it is easy to check
that[
K†
i (x1)Kj(x2), K

†
p (x1)Kl(x2)

]
= 0 (45)

for any subscript i, j, p, l ∈ {1, 2}, the ancillary system thus can not
help improving the precision limit in this case. This example has
also been recognized in ref. [11] through direct comparison.
When the dimension of the system gets large, the semi-

definite programming becomes computationally hard. It is then
difficult to obtain the optimal state in the general case. However,
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Figure 3. a) Scheme for a general optical Mach-Zehnder interferometer
for quantum phase estimation, which consists of two beam splitters and
a phase shift. b) Scheme for the lossy Mach-Zehnder interferometer in
which the photon loss in each arm is modeled by a fictitious beam splitter.

for some special case, it is still possible to obtain the optimal
state analytically.

3.1. Analytical Optimization

Analytical optimizations are difficult to perform inmost cases. In
general the complexity for the calculation of the QFI is equivalent
to the diagonalization of the density matrix, which grows expo-
nentially with the number of particles. However, there still exist
some cases that the analytical optimization is possible. The sim-
plest case is the unitary parameterization with exp(−ixH), where
the optimal state can be analytically obtained[4] as the equal su-
perposition of two eigenstates that corresponds to the maximal
and minimal eigenvalues of H respectively.
The linear Mach-Zehnder interferometer (MZI) is another im-

portant scenario that the analytical state optimization has been
studied. An optical MZI consists of two beam splitters and a
phase shift as illustrated in Figure 3a. This can bemodeled as the
SU(2) interferometer, of which the parameterization process is
Umz = exp(−i𝜙Jy), where Jy =

1
2i
(a†b − ab†) is a Schwinger oper-

ator with a (a†) and b (b†) as the annihilation (creation) operators
for two boson modes respectively (the other two Schwinger oper-
ators are Jx =

1
2
(a†b + ab†) and Jz =

1
2
(a†a − b†b).[89] In practice,

the input states in the two modes are typically separable, which
significantly reduce the state space for the optimization. This
space can be further reduced when additional restrictions are in-
voked. For example, if the probe state in one import is restricted
to be an odd or even state, then the maximal QFI can be achieved
when the states of the two modes satisfy the phase-matching
condition,[90] which forms a basis for the state optimization in
the MZI.[90–92] In practice, the phase of the input states require
extra resources to identify, such as an external phase reference.
Without these extra resources, the phase averaged states aremore
suitable in practice.[93]

When the state of one mode is the coherent state (|𝛼⟩),
Caves[89] found that by injecting the squeezed vacuum state,|𝜉⟩ = e

1
2
(𝜉∗a2−𝜉a†2)|0⟩ (here |0⟩ refers to the vacuum state and 𝜉 the

squeezing parameter), in the other mode, the standard quantum

limit can be surpassed. Lang and Caves[94] further investigated
this problem and showed that the squeezed vacuum state is ac-
tually optimal. It is shown by expressing the QFI in terms of
the variance of the momentum as F𝜙 = 2|𝛼|2⟨Δ2p̂⟩ + Nb, where⟨Δ2p̂⟩ := ⟨p̂2⟩ − ⟨p̂⟩2 with p̂ = 1√

2i
(b − b†)[95] and ⟨⋅⟩ := Tr(⋅𝜌) de-

notes the expected value, Nb is the photon number in the second
mode. It can be seen that the maximal F𝜙 is obtained when the
variance of the momentum in the second mode is maximal. By
utilizing the inequalities

⟨Δ2p̂⟩ + ⟨Δ2x̂⟩ ≤ ⟨p̂⟩2 + ⟨x̂⟩2 = 2Nb + 1 (46)(⟨Δ2p̂⟩ − ⟨Δ2x̂⟩)2 ≤ 4Nb(Nb + 1) (47)

where x̂ = 1√
2
(b + b†) is the position operator of the secondmode,

one can obtain

2⟨Δ2p̂⟩ ≤ 2
√
Nb(Nb + 1) + 2Nb + 1 (48)

which leads to the maximum QFI

F𝜙,max = 2NaNb + Na + Nb + 2Na

√
Nb(Nb + 1) (49)

This maximal QFI can be achieved with the squeezed vacuum
state. Hence, when one import is fixed to be the coherent state,
the squeezed vacuum state is optimal for the other port. How-
ever, the optimal state may not be unique. The existence and the
properties of other optimal states need further investigation.
Lang and Caves[96] also studied the optimal state when the

input state of the other import is fixed to be the squeezed vac-
uum state. Interestingly, the optimal state in this case is also a
squeezed vacuum state. These two squeezed states need to have
opposite values of 𝜉 to satisfy the phase-matching condition.
In the case of the Bayesian estimation where the priori infor-

mation of the phase is a flat distribution, it is also possible to
perform the state optimization analytically. For instance, Berry
and Wiseman[97,98] studied the state optimization in the MZI.[99]

The target function they used is the Holevo phase variance[100]

S−2 − 1 with

S =
||||∫

𝜋

−𝜋
p(𝜙)ei𝜙d𝜙

|||| (50)

representing the sharpness of the phase distribution. For a fixed
photon number, the optimal input state, which maximizes S, is
given by[97, 98]√

2
N + 2

N∕2∑
m=−N∕2

sin
(
(2m + N + 2)𝜋

2(N + 2)

)|m⟩ (51)

where |m⟩ is the eigenstate of Jy for a fixedN with the eigenvalue
m.
Apart from the direct optimization, the convex optimization

has also been widely used due to the convexity of the QFI
as[101, 102]

Fx(a𝜌1 + (1 − a)𝜌2) ≤ aFx(𝜌1) + (1 − a)Fx(𝜌2) (52)
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with a ∈ [0, 1]. The convexity of the QFI indicates that the max-
imal QFI can always be attained by a pure state. Since a mixed
state can always be expressed as a convex combination of pure
states as 𝜌 =

∑
i pi|𝜓i⟩⟨𝜓i| with∑

i pi = 1, we then have have

Fx[x(𝜌)] ≤
∑
i

piFx[(|𝜓i⟩⟨𝜓i|)]
≤ max

i
Fx[x(|𝜓i⟩⟨𝜓i|)] (53)

With this convexity, Takeoka et al.[103] proved a no-go theorem
for the MZI. This no-go theorem states that with the unknown
phase shifts in both arms of the MZI, which is the case for the
gravitational wave detection, the scaling of the precision cannot
go beyond the standard quantum limit if the input of one import
is vacuum.
Although the convexity of the QFI implies the optimal state

is pure in general, in some specific scenarios the optimization
within the mixed states could still be meaningful. In 2011 Modi
et al.[104] studied the parameter estimation in terms of quantum
circuits in which the initial states are prepared via the Hadamard
and Control-Not gates from mixed qubit states. The state op-
timization in this case is performed directly from the analyti-
cal expression of the QFI. Fiderer, Fraïsse and Braun[105] con-
sidered the unitary parameterization where the initial state is
prepared via unitary operations on a fixed mixed state, namely,
𝜌in = U𝜌fixU

† with U as any unitary operator and 𝜌fix a fixed
mixed state. The state then goes through a unitary parametriza-
tion as 𝜌 = Ux𝜌inU

†
x , whereUx is the unitary operator encodes the

parameter. In this case, the state optimization is restricted to the
state space that has the same spectrum as 𝜌fix. Denote the spec-
tral decomposition of 𝜌fix as 𝜌fix =

∑d
i=1 𝜆i|𝜆i⟩⟨𝜆i| with d the di-

mension of the density matrix, and 𝜆i is ordered as 𝜆1 ≥ ⋯ ≥ 𝜆d.
Utilizing the operator , the optimal initial state is proved to be
in the form 𝜌in,opt =

∑d
i=1 𝜆i|𝜙i⟩⟨𝜙i| with

|𝜙i⟩ = ⎧⎪⎨⎪⎩
1√
2

(|i⟩ + |d−i+1⟩), if 2i < d + 1,|i⟩, if 2i = d + 1,
1√
2

(|i⟩ − |d−i+1⟩), if 2i > d + 1

(54)

Here |i⟩ is an eigenstate of  with  the generator Hamilto-
nian of Ux defined as

 = i
(
𝜕xU

†
x

)
Ux = −iU†

x

(
𝜕xUx

)
(55)

i|i⟩ = hi|i⟩ with the eigenvalue, hi, arranged in decreasing
ordered as h1 ≥ ⋯ ≥ hd, then the maximal QFI is

Fx,opt =
1
2

d∑
i=1

ci,d−i+1
(
hi − hd−i+1

)2
(56)

where ci,j = 0 if 𝜆i = 𝜆j = 0 and (𝜆i − 𝜆j)
2∕(𝜆i + 𝜆j) for others.

In the case that the generator Hamiltonian of Ux is time-
dependent and controllable, that is, H = Hx(t) +Hc(t), where
Hx(t) depends on the unknown parameter x andHc(t) is the con-

trol Hamiltonian. They further found an upper bound of the QFI
(denoted by Fup),

Fup =
1
2

d∑
i=1

ci,d−i+1

[
∫

t

0

(
𝜇i − 𝜇d−i+1

)
d𝜏

]2
(57)

where 𝜇i = 𝜇i(t) is an eigenvalue of 𝜕xHx(t) with corresponding
eigenstate |𝜇i(t)⟩ with 𝜇i arranged in decreasing ordered, 𝜇1 ≥
⋯ ≥ 𝜇d. The optimal initial state that attains this upper bound is
𝜌in,opt =

∑d
i=1 𝜆i|𝜙′

i⟩⟨𝜙′
i|, where

|𝜙′
i⟩ =

⎧⎪⎨⎪⎩
1√
2

(|𝜇i(0)⟩ + |𝜇d−i+1(0)⟩), if 2i < d + 1,|𝜇i(0)⟩, if 2i = d + 1,
1√
2

(|𝜇i(0)⟩ − |𝜇d−i+1(0)⟩), if 2i > d + 1

(58)

Correa et al.[106] studied the optimal probe state for fully ther-
malized thermometers, which are in equilibrium state with the
reservoir. Assuming the probe is a N-dimensional system, they
found the optimal thermalized state, 𝜌 = e−𝛽H∕Z, requires the
Hamiltonian to be an effective two-level system with a highly de-
generate excited state and a specific temperature-dependent gap,
here 𝛽 = kBT with kB as the Boltzmann constant and T as the
temperature. Denote the Hamiltonian as H =

∑N−1
i=0 Ei|Ei⟩⟨Ei|,

then the optimal energy structure needs to satisfy

(Ei − Ej)
[
Ei + Ej − 2(⟨H⟩ + T)

]
= 0 (59)

for any i and j with ⟨H⟩ = 1
Z

∑N−1
i=0 Eie

−𝛽Ei , which is equivalent
to Ei = Ej or Ei + Ej = 2(⟨H⟩ + T). This condition implies that
the optimal structure is a degenerate two-level system with the
energy gap 2(⟨H⟩ + T). The temperature dependence of the op-
timal energy gap means a tunable degenerate two-level system
is required in this scheme and the measurement has to be per-
formed adaptively.
The analytical form may also be identified when the state

is restricted to be Gaussian. In 2006, Monras[107] studied the
case of a single mode Guassian state under the unitary channel,
exp(−ixa†a). They found that the squeezed vacuum state is opti-
mal in this case. Săfránek and Fuentes[108] further considered sev-
eral specific cases including the estimation of a unitary channel
that combines the phase-change, squeezing, as well as the gen-
eralized two-mode squeezing and mode-mixing channels. They
provided the optimal states by the direct calculation of the QFI
with analytical optimizations.
Knysh et al.[109] developed a method to identify the optimal

probe states for noisy dynamics in the asymptotic limit. With an
asymptotically large number of qubits or photons, they mapped
the problem of identifying the optimal states to that of finding
the ground state of a quantum-mechanical particle in a 1D poten-
tial, where the form of the potential can be determined from the
type of the noise. With this method, they identified the optimal
probe states for various noisy dynamics, including both individ-
ual and collective dephasing, relaxation and excitation, as well as
combinations of the above noises. For typical noisy dynamics the
optimal probes are found to approach a Gaussian profile in the
asymptotic limit.[109]
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3.2. Semi-Analytical Optimization

The search of optimal states for noisy dynamics is much more
difficult in general. Most noisy dynamics are described in terms
of the differential equations and in many cases they cannot be
solved analytically, which makes the analytical state optimization
impossible. In the case that the analytical solutions of the density
matrix, or the QFI, can be obtained, the feasibility of the analyti-
cal optimization is still not promised. Nevertheless, some analyt-
ical expressions are definitely useful for the optimization, which
leads to the semi-analytical optimization.
Due to the convexity of the QFI, many methods in the con-

vex optimization have been successfully applied in the state op-
timization. It has been applied to the lossy MZI illustrated in
Figure 3b, where the photon loss in the optical MZI is modeled
by the fictitious beam splitter. Dorner, Demkowicz-Dobrzanski
et al.[110,111] studied the state optimization in a lossy MZI where
one or two arms suffer the photon losses, as illustrated in Fig-
ure 3b. The input state, |𝜓in⟩, is taken as a two-mode pure state
with fixed total photon number (N),

|𝜓in⟩ = N∑
k=0

ck|k, N − k⟩ (60)

where |k, N − k⟩ is the two-mode Fock state and ck is a complex
coefficient. In the case that only one arm suffers the photon loss,
the QFI can be obtained directly, which is shown to be a concave
function of {|ck|2}. This means that the local maximum of the
QFI is also the globalmaximum. The optimization can be written
as

min −Fx({|ck|2})
s.t. |ck|2 ≥ 0 (61)

The interior-point method with the logarithmic barrier function
is then used to numerically locate the optimal state.[112] The re-
sults show that in the case ofN = 10, the optimal state for a small
loss rate is a N00N-type state c0|0N⟩ + cN|N0⟩, which, when the
loss rate is 0, reduces to the N00N state, 1√

2
(|0N⟩ + |N0⟩). It is

also found that the performance of the state ck|k, N − k⟩ + cN|N0⟩
with the optimal coefficient ck and optimal k is very close to the
optimal state in a wide regime of the loss rate.
When equal photon losses exist in both arms, the QFI

is not easy to obtain. Instead, an upper bound of the QFI,
Fx(

∑
i pi|𝜓i⟩⟨𝜓i|) ≤ ∑

i piFx(|𝜓i⟩⟨𝜓i|), has been used as the tar-
get function for the state optimization. Again by utilizing the
interior-point methods, it is found that theN00N-type state is op-
timal forN < 10. In the case thatN = 10, the standardN00N state
is optimal for small losses and with the increase of the loss rate
the performance of the state[97,98,113]√

2
N + 2

N∑
k=0

sin
(
(k + 1)𝜋
N + 2

)|k, N − k⟩ (62)

is very close to the optimal one. Knysh et al.[114] also studied the
state optimization in the lossyMZI with the input state described
in Equation (60). They considered the case where only one arm

has photon loss and derived an upper bound on the QFI as 4(1 −
R)N∕R, where R is the reflectivity of the fictitious beam splitter.
The optimal state is then obtained by minimizing the difference
between the upper bound and the QFI.

3.3. Numerical Optimization

Compared to the analytical optimization, the numerical ap-
proaches can be applied to more general scenarios. Although
most searching algorithms can be used in the state optimiza-
tion, the algorithms typically can only be applied to systems with
limited sizes due to the curse of the dimensionality. One way to
solve this problem is to manually reduce the search space. For
example, Fröwis et al.[115] had chosen a subspace to perform the
optimization. They considered the frequency estimation of a col-
lective spin system suffering the dephasing noise. The system
Hamiltonian isH = Sz :=

1
2

∑N
i=1 𝜎

(i)
z , where 𝜎

(i)
z is the Pauli Zma-

trix for the ith spin and N is the number of spins. Both the local
and collective dephasing have been studied. To reduce the search
space, the states are restricted to the form

|𝜓⟩ = J∑
m=−J

cm|J,m⟩ (63)

where |J,m⟩ is the Dicke state with J = N∕2. Such state can
be characterized by c = (c−J,… , cJ). With this ansatz, the search
space reduces to the state space with the maximum angular mo-
mentum J. It can be further reduced by assuming cm is real and
positive, and cm = c−m as the dynamics is unchanged under the
collective spin flipping, 𝜎⊗N

x .
Within this subspace, Fröwis et al. applied the Nelder–Mead

algorithm[116] to perform the state optimization that maximizes
Fx∕t. The Nelder–Mead algorithm is a gradient-free search
method. The flow chart of the Nelder–Mead algorithm to locate
the minimum target function in the case of the state optimiza-
tion is shown in Figure 4, which includes the operations of the
reflection, expansion, contraction and shrink. The first step of
this algorithm is to take n + 1 states {c1,… , cn+1} and calculate
the objective function

fi = − 1
T
Fx(ci, T) (64)

at a given time T , order them as f1 ≤ f2 ⋯ ≤ fn+1. Next, calculate
the reflection state cr = c̄ + ar(c̄ − cn+1), here ar > 0 is the reflec-
tion coefficient and c̄ = 1

n

∑n
i=1 ci, which leads to an updated ob-

jective function fr. The states are then updated based on the rela-
tion between fr and the values of the existing objective functions
as following:

• if f1 ≤ fr < fn, replace cn+1 with cr and start over;
• if fr < f1, let ce = c̄ + ae(cr − c̄), and replace cn+1 with cr (ce) if
fe ≥ fr (fe < fr). This is called the expansion step.

• if fn ≤ fr < fn+1, let coc = c̄ + ac(cr − c̄), and if fr ≥ fn+1 let cic =
c̄ − ac(c̄ − cn+1). Replace cn+1 with cic (or coc) if fic < fn+1 (foc ≤ fr).
This is called the contraction step. If fic or foc fails to satisfy
the conditions, then replace all the states as ci = c1 + as(ci − c1)
and start over.

Adv. Quantum Technol. 2021, 2100080 © 2021 Wiley-VCH GmbH2100080 (8 of 20)

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

Figure 4. Flow chart for the Nelder–Mead algorithm in the state optimization.

The algorithm stops when Δf = fn+1 − f1 < 𝜖 where 𝜖 is a given
precision. In this algorithm, the coefficients ae > max{1, ar} and
0 < ac, as < 1. A usual set of coefficients is ar = 1, ae = 2, ac =
as = 1∕2.
Utilizing the Nelder–Mead algorithm, Fröwis et al.[115] per-

formed the numerical optimization for the estimation of the fre-
quency up to 70 qubits, where the dynamics of the system is de-
scribed by the master equation with the dephasing

𝜕t𝜌 = −i[𝜔Sz, 𝜌] +
𝛾

2

∑
i

(𝜎(i)z 𝜌𝜎
(i)
z − 𝜌) (65)

with 𝜔 the frequency to be estimated. The numerical result sug-
gests that although the optimal one-axis twisted spin-squeezed
state shows a very good performance, it is still not exactly opti-
mal up to N ≈ 70. It indicates that the spin squeezed state is not
necessary optimal for the frequency estimationwhen the number
of qubits is finite, although asymptotically certain type of the spin
squeezed state is optimal.[109,117] At the presence of the collective
dephasing

𝜕t𝜌 = −i[𝜔Sz, 𝜌] −
𝛾

1 − e−𝛾t
[
Sz,

[
Sz, 𝜌

]]
(66)

with 𝜔 the frequency to be estimated. The numerical result sug-
gests that the Greenberger-Horne-Zeilinger state 1√

2
(|N

2
,−N

2
⟩ +|N

2
, N
2
⟩) is the optimal state.

In 2016 Knott[118] provided a search algorithm for the state
optimization in quantum optics, which is inspired by the evo-
lutionary algorithms. This algorithm takes the QFI as the tar-
get function. It considers a practical state preparation scenario
with two optical modes. The input states in these modes are first
chosen from several types of well-studied states in quantum op-
tics, including the coherent state, squeezed vacuum state, and

the Fock state, which then goes through a series of operations
and then a heralding measurement is performed in one mode
at the end. The operations includes the beam splitter operator,
the displacement operator, a phase shift in one mode, the iden-
tity matrix and a non-unitary operator that measures the state
in one mode and input a new state. The heralding measure-
ment is the photon-number resolving detection, including 1 to
4 photons. The algorithm first randomly picks the input states,
the operations and the heralding measurement from the toolbox
and calculates the corresponding QFI. If it is large, it is taken
as the parent and then create an offspring by making a ran-
dom change in the process. If the offspring still provides a large
QFI, then it is used to continue to create the next-generation off-
spring. Hence, this algorithm is similar to a random search al-
gorithm. Applied to the case of a MZI with phase shifts on both
arms, this algorithm finds states that outperform the squeezed
vacuum state by a constant factor. However, the scaling is still
at the standard quantum limit due to the no-go theorem given
in ref. [103].
Apart from the aforementioned algorithms,many other search

and optimization algorithms can be applied to the state optimiza-
tion, such as the particle swarm optimization,[119] the learning
algorithms including the actor-critic algorithm[120] and deep de-
terministic policy gradient algorithm.[121] Thesemethods are cur-
rently being merged in the QuanEstimation package[122] which
will be thoroughly discussed in a forthcoming paper.

4. Optimization of the Parameterization Processes

The optimization of parameterization process is a major compo-
nent for the enhancement of the precision limit. In this section,
we will introduce the existing optimization methods for the pa-
rameterization processes.

Adv. Quantum Technol. 2021, 2100080 © 2021 Wiley-VCH GmbH2100080 (9 of 20)

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

4.1. Quantum Control

During the evolution of the parametrization process, quantum
controls can be employed to alter the dynamics in a desired
way which can improve the precision limit. The controls during
the parametrization can either be discrete pulses or continuous
wave forms.
When the dynamics is unitary with a time independentHamil-

tonian, H(x), one optimal control that gives the maximal QFI is
to reverse the free evolution, that is, by adding a control Hamilto-
nianHc = −H(x).[123,124] Since the value of the parameter is a pri-
ori unknown, in practice the controls need to be designed adap-
tively as Hc = H(x̂) with x̂ as the updated estimation from the
accumulated data. Such optimally controlled schemes have been
experimentally implemented for the estimation of the parame-
ters in SU(2) operators.[125,126] Pang and Jordan[127] considered
the unitary dynamics with time-dependent Hamiltonian,H(x, t).
It is shown that the QFI for a general time-dependent unitary
parametetization process is upper bounded as

√
Fx(t) ≤ ∫

t

0
hmax(𝜏) − hmin(𝜏)d𝜏 (67)

where hmax(min) is the maximum (minimum) eigenvalue of
𝜕xH(x, 𝜏). This upper bound can be attained by preparing the ini-
tial state as 1√

2
(|hmax(0)⟩ + |hmin(0)⟩) and using the control to keep

the state as 1√
2
(|hmax(𝜏)⟩ + |hmin(𝜏)⟩) during the entire evolution,

here |hmax(min)(𝜏)⟩ is the eigenstate of 𝜕xH(x, 𝜏) with respect to the
eigenvalue hmax(min)(𝜏).
When the dynamics is noisy, the optimization in general can

only be performed numerically. A widely used optimal quan-
tum control method is the gradient ascent pulse engineering
(GRAPE) developed by Khaneja et al.[128] GRAPE has been
employed in quantum metrology under the Markovian noisy
dynamics[129,130] where the dynamics is described by the master
equation

𝜕t𝜌 = −i[H, 𝜌] +
∑
k

(
Γk𝜌Γ

†
k −

1
2
{Γ†

kΓk, 𝜌}
)

(68)

here the Hamiltonian takes the form

H = H0 +
∑
k

Vk(t)Hk (69)

withH0 as the free-running Hamiltonian andHk as the kth con-
trol Hamiltonian with the time-dependent amplitude Vk(t).
For the single-parameter estimation, the steps of the algorithm

are presented in Algorithm 1, in whichΔt is a small time interval,
𝜌t (t) is the density matrix (superoperator) at time t. Before cal-
culating the gradient, a full running of the evolution is required
to obtain the set of propagating superoperators , which will be
used in the calculation of the gradient. The gradient in this al-
gorithm can be obtained analytically. The corresponding specific
expressions of the gradients and propagators  can be found in
refs. [39, 129, 130], and the codes have been integrated into the
package QuanEstimation. Besides GRAPE, Krotov’s method has
also been employed in the design of optimal control in quantum
metrology.[131]

Algorithm 1 GRAPE algorithm[129]

Initialize the control amplitude Vk(t) for all t and k;
for episode=1, M do

Receive initial state ρ1 (i.e. ρin);
for t = 1, T do

Evolve with the control ρt+1 = eΔtLtρt;
Calculate the propagators
Dt

t+1 = I,Dt
t = eΔtLt ,Dt

0 = Dt
tDt−1

0 ;
for i = 1, t do

Calculate the propagators
Dt

t−i = Dt
t−i+1Dt−i

t−i;
end for

end for
Save all ρt and D;
Calculate the SLD Lx(T ) and QFI F (T );
for t = 1, T do

for k = 1, P do
Calculate the gradient δF (T )

δVk(t) ;

Update control Vk(t)←Vk(t)+ε δF (T )
δVk(t) ;

end for
end for

end for

When the size of the system increases, the simulation of the
dynamics can be difficult. A hybrid quantum-classical has been
proposed to deal with this issue, where the dynamics is simulated
experimentally instead of numerically. Such hybrid approach has
been experimentally demonstrated with the nuclear magnetic
resonance.[132–134] Other hybrid variants ofGRAPEhave also been
proposed,[135–138] which can be employed in quantummetrology.
Apart from the gradient-based algorithms, learning algorithms

have also been employed for the generation of optimal control
in quantum metrology. For example, Xu et al.[139] used the asyn-
chronous advantage actor-critic algorithm (A3C), a reinforce-
ment learning algorithm, to generate optimal controls in qubit
systems. The pseudocode of A3C algorithm for quantum estima-
tion is given in Algorithm 2 and the corresponding flow chart is
given in Figure 5a. This algorithm contains a global actor net-
work with a distribution 𝜋(𝜌t; 𝜃) as the output and a global critic
network with a value V(𝜌t;𝜔) as the output. Here 𝜃 and 𝜔 are vec-
tors of the network parameters and 𝜌t is the density matrix at tth
time step as well as the input of both networks. Before training,
it assigns the task to multiple threads to enable the parallelism
with local parameters 𝜃′ and 𝜔′ copied from the global networks.
A local actor network picks the action from 𝜋(𝜌t; 𝜃) and receives
a reward rt related to the QFI (Ft), which can be the QFI itself or
(Ft − 𝜂Fno,t)∕Fno,t [139] with 𝜂 ∈ (0, 1] and Fno,t as the QFI without
the control. A local critic network generates the value function
V(𝜌t;𝜔), the parameters in the global network are then updated
sequentially after the final (Tth) time step according to the accu-
mulate gradients in all local networks.
The performance of A3C algorithm works well in qubit sys-

tems, especially combined with the proximal policy optimization
algorithm.[139] However, it becomes hard to converge when the
dimension of the system increases. In these cases, the deep de-
terministic policy gradient (DDPG) algorithm might be a better
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Algorithm 2 A3C algorithm[140]

Randomly initialize global network parameters θ and ω;
for episode=1, M do

Reset gradient: dθ = 0, dω = 0;
Synchronize thread-specific parameters θ′ ← θ, ω′ ← ω;
Receive initial state ρ1 (i.e. ρin);
for t = 1, T do

Pick the action Vt from π(ρt; θ′);
Evolve with the control and receive a reward rt and state ρt+1;
Assign the value function V (ρt;ω′) to discount reward Rt (Rt = 0 for the last time step);

end for
Save all rt, ρt and Rt;
for i = T, 1 do

Update the discount reward Ri ← ri + γRi;
Update accumulate gradients dθ ← dθ + ∇θ′ log(π(ρi; θ′))[Ri − V (ρi;ω′)], dω ← dω + ∇ω′ [Ri − V (ρi;ω′)]2;

end for
Update the network parameters θ ← θ + dθ, ω ← ω + dω.

end for

Figure 5. a) Flow chart for the asynchronous advantage actor-critic algorithm (A3C) in each epoch for the generation of optimal control in quantum
parameter estimation. b) Flow chart for the deep deterministic policy gradient algorithm (DDPG) in each epoch for the generation of optimal control in
quantum parameter estimation. (b) Reproduced with permission from ref. [141]. Copyright 2021, American Physical Society.

choice, which has been demonstrated to be feasible in the gen-
eration of optimal control for certain estimations involves mul-
tiple parameters.[142] It has also been used to enhance the spin
squeezing.[141] The pseudocode of DDPG algorithm for quantum
estimation is given in Algorithm 3 and the corresponding flow
chart is given in Figure 5b. This algorithm contains two actor-
critic networks which are usually referred to as the main net-
works and target networks, respectively. The main actor network

outputs a value 𝜇(𝜌t; 𝜃), which, by adding a random distribution
t, gives the action Vt as Vt = 𝜇(𝜌t; 𝜃) +t. The main critic net-
work outputs a value Q(𝜌t, Vt;𝜔), which is treated as a loss func-
tion for the update of 𝜃. For the sake of minimizing the correla-
tions between samples,N sets of data (𝜌t, Vt, rt, 𝜌t+1) are stored in
a replay buffer, where rt is the reward related to the QFI. When
the storage is finished, a random minibatch of m transitions in
the buffer are put into the main and target networks during each
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Algorithm 3 DDPG algorithm[121]

Randomly initialize main network parameters θ and ω;
Synchronize target network parameters ω′ ← ω, θ′ ← θ;
Initialize replay buffer R;
for episode=1, M do

Initialize a random distribution N for action exploration;
Receive initial state ρ1 (i.e. ρin);
for t = 1, T do

Take the action Vt = μ(ρt; θ) + Nt;
Evolve with the control and receive a reward rt and state ρt+1;
Store transition (ρt, Vt, rt, ρt+1) in R;
if N > buffer capacity then

Sample a random minibatch of m transitions {(ρj , Vj , rj , ρj+1)} from R;
Calculate all yj = rj + γQ′(ρj+1,V ′

j+1;ω
′) in the minibatch;

Calculte the gradient ∇θLa with La = − 1
m

∑
j Q(ρj ,Vj ;ω);

Calculate the gradient ∇ωLc with Lc = 1
m

∑
j [yj −Q(ρj , Vj ;ω)]2;

Update main network parameters θ ← θ + ∇θLa, ω ← ω + ∇ωLc;
Update target network parameters θ′ ← τθ + (1 − τ)θ′, ω′ ← τω + (1 − τ)ω′ with τ a small weight.

end if
end for

end for

time step, which is used to obtain the gradients with respect to
𝜃 and 𝜔. The main networks are then updated accordingly. The
update of the target networks are typically much slower than the
main networks to avoid sharp waving of the total rewards. Feed-
back controls can also be used to enhance the QFI.[143,144]

For non-Markovian dynamics, recently studies have also ob-
tained the optimal precision which can be computed with the
semi-definite programming.[145,146]

4.2. Quantum Error Correction

Quantum error correction is an important tool to battle the
noises. Since the pioneer work by Peter Shor,[147] general the-
ory of quantum error correction has been developed[79,148–152]

and applied in quantum computation[153–156] and quantum
communication.[67,157,158] Recently, the error correction has also
been applied in quantum metrology for the enhancement of the
precision limit.[117,159–169]

Given a general noisy quantum channel

(𝜌in) =
m∑
j=1

Kj𝜌inK
†
j (70)

the task of quantum error correction is to find a subspace (or
error-correcting code)  of the Hilbert space such that for any
quantum state 𝜌c in the subspace, there always exists a recovery
channel which can eliminate the effect of the noise, that is,

((𝜌c)) ∝ 𝜌c (71)

where 𝜌c is a state in the subspace . This is possible if each
of the error (Kraus) operators Ki maps the code  to unde-
formed and respectively orthogonal subspace, which is detectable
and correctable. This forms the condition of quantum error

correction,[79,149,150] specifically,  exists if and only if all the
Kraus operators satisfy

ΠcK
†
j KlΠc = cjlΠc (72)

where Πc is the projective operator to the code space spanned by
the code  and cjl is a complex constant satisfying cjl = c∗lj .
In quantum metrology, besides correcting the noise, a use-

ful quantum error correction code must also protect the in-
formation of the parameter at the same time. Without loss of
generality,[165,169] assume the Hamiltonian of the dynamics takes
the form H = xG with x as the unknown parameter and G as
the generator, and for a small time interval dt the dynamics is
described by (Udt(𝜌c)) with Udt(𝜌c) = e−iHdt𝜌ce

iHdt and (𝜌) =∑
j Kj𝜌K

†
j . The goal of error correction is then to design a recovery

operation  such that ((Udt(𝜌c))) is effectively unitary in the
code subspace  with nontrival parametrization. Such recovery
operation exists if and only if[159]

(1) ΠcK
†
j KlΠc = cjlΠc, ∀j, l (73)

(2) max|Ψ⟩∈⟨ΔG2
eff ⟩ > 0

where Geff = ΠcGΠc is the effective generator in the code space,⟨ΔG2
eff ⟩ = ⟨Ψ|G2

eff |Ψ⟩ − ⟨Ψ|Geff |Ψ⟩2. Condition (1) straightfor-
wardly comes from Equation (72), which ensures the existence of
a recovery operation. Condition (2) requires the error-corrected
dynamics depends nontrivially on the parameter x and the max-
imal QFI of x is non-zero.
When the noise is Markovian and the dynamics is described

by the master equation as

𝜕t𝜌 = −i[H, 𝜌] +
∑
k

𝛾k

(
Γk𝜌Γ

†
k −

1
2
{Γ†

kΓk, 𝜌}
)

(74)
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The error-correction condition can be equivalently formulated
as[165, 169]

(1) ΠcΓjΠc = 𝜆jΠc, ∀j

(2) ΠcΓ
†
j ΓlΠc = 𝜇jlΠc, ∀j, l (75)

(3) ΠcGΠc ≠ 𝜅Πc

Here 𝜆j, 𝜇jl are complex numbers and 𝜅 is a constant. Under
the error-correction, the state in the code space evolves effec-
tively as 𝜕t𝜌 = −i[Heff, 𝜌], whereHeff = xGeff = xΠcGΠc.With this
noiseless evolution, the maximal QFI is achieved by choosing
the initial state as |𝜓in⟩ = 1√

2
(|𝜆min⟩ + |𝜆max⟩), where |𝜆min⟩ and|𝜆max⟩ are the eigenstates of Heff with respect to the minimum

and maximum eigenvalues. And the corresponding QFI is Fx =
t2(𝜆max − 𝜆min)

2, indicating the Heisenberg limit is achieved.
Denote the space spanned by the Lindblad operators as  =
span{I,Γj,Γ

†
j ,Γ

†
j Γl}, it has been shown that the precision can

reach the Heisenberg scaling if and only if H ∉  , that is,
the HNLS (Hamiltonian-not-in-Lindblad-span) condition.[165,169]

When the condition holds, an explicit construction of the error-
correcting code has also been provided by Zhou et al.[169]: define
an inner product between two Hermitian matrices, A and B, as
Tr(AB), the Hamiltonian can then be uniquely decomposed as
H = H∥ +H⊥, where H∥ ∈  and H⊥⊥ , if G ∉  , then H⊥⊥
is nonzero and can be written as H⊥ = 1

2
‖H⊥‖1(𝜌0 − 𝜌1), where

𝜌0 and 𝜌1 are trace-one positivematrices with orthogonal support.
By introducing an ancillary system,A, 𝜌0 and 𝜌1 can be purified
as |C0⟩ and |C1⟩ which have orthogonal support inA, the error
correction code can then be chosen as the subspace of S ⊗A
spanned by |C0⟩ and |C1⟩.
In the quantum error correction protocol for quantummetrol-

ogy, the degrees of freedom available for optimization is the
error correction code. In the case of single-parameter estima-
tion, the code optimization is to optimize span{|C0⟩, |C1⟩} to let
the Hamiltonian has the maximum gap between the minimum
and maximum eigenvalues. Using 𝜆max − 𝜆min = Tr(Heff C̃) =
Tr(H⊥C̃) with C̃ = 𝜌0 − 𝜌1, the optimization can be formulated
as[169]

max Tr(C̃H⊥)

s.t. ‖C̃‖op ≤ 2

Tr(C̃S) = 0,∀S ∈  (76)

Its Lagrange dual problem can be solved efficiently via semidefi-
nite programming as

min s

s.t.
(
sI H1
H1 sI

)
≥ 0 (77)

for variables 𝜈k ∈ ℝ and s ≥ 0, hereH1 = H⊥ +
∑

k 𝜈kEk and {Ek}
is any basis of  . In the multiparameter case, the code optimiza-
tion is much more complicated as one needs to optimize not
only the error correction code but also the input state and the
final measurement. An algorithm is given by Górecki et al.[168]

Figure 6. Adaptive measurement scheme in MZI. In this scheme, apart
from the unknown phase shift, a known tunable phase shift exists in other
arm.

to tackle these problems. For the dynamics with specific noise,
there also exist ancilla-free protocols to achieve the Heisenberg
limit.[166] If theHNLS condition is violated, the precision can only
achieve the standard quantum limit, and with approximate quan-
tum error correction, it has been shown that the upper bound in
Equation (35), where only the first term survives, can be saturated
for asymptotically large N up to an arbitrarily small error.[117]

This determines the ultimate precision limit that can be achieved
when the HNLS condition fails.

5. Optimization of the Measurement

Theoretically for the single-parameter estimation the quantum
Cramér–Rao bound can be saturatedwith the projectivemeasure-
ment on the eigenstates of the SLD operator. However, when the
size of the system increases, the eigenstates of the SLD can be
hard to identify. Such measurement can also be highly nonlocal
and practically challenging. In general, these measurements can
also depend on the value of the unknown parameter, thus can
only be realized adaptively. This often requires a large amount of
data processing that needs to be optimized. Here we review some
optimization techniques that are employed for the local adaptive
measurement, which are practically less demanding.
The adaptive measurement was first used in the optical MZI,

where apart from the unknown phase shift, an additional tun-
able phase is introduced in the other arm in an adaptive way, as
illustrated in Figure 6. It requires many rounds of the measure-
ment and the tunable phase needs to be adjusted in each round
according to the accumulated measurement data. The major re-
quirements of the adaptive scheme is that the precision of the
known phase has to be much better than that of the phase to
be estimated. In this scheme, how to tune the known phase be-
comes an important question as it affects both the precision of
the results as well as the efficiency of the scheme.
Both online and offline optimizations have been proposed to

optimize the tunabe phase. In the online approach the tunable
phase is adjusted through the real-time optimization based on
the results of the previous rounds, and in the offline approach
the adjustment of the tunable phase is given by a fixed formula
which is optimized before the experiment.
Berry et al.[29,97,98] proposed an adaptive local measurement for

the phase estimation, where the target function to maximize is
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Figure 7. Illustration of the process of an online adaptive measurement.
In each round of the measurement, one needs to calculate the target func-
tion M(Φ) based on p(um|𝜙) and then optimize it to obtain an optimal
tunable phase Φm, which is used to adjust the MZI. The measurement is
performed with the adjusted MZI and the result is recorded. For an offline
scheme, no optimization is applied during the experiment and all {ΦN} is
obtained in advance.

taken as the sharpness function which will be specified below.
Different target functions can be employed which typically con-
verge to the variance in the asymptotic limit. In this scheme, the
probe state |𝜓in⟩ is prepared in the form of Equation (51) with the
N photons. Then only one photon goes thorough theMZI in each
round. The protocol is illustrated in Figure 7. In the mth round,
the target function, which is based on the conditional probabil-
ity, is calculated which is used to obtain an optimal tunable phase,
Φm. We first show the calculation of the conditional probability
given a series of measurement results. The annihilation operator
in the output port of the MZI can be expressed as[97, 98]

au = ain sin
(1
2
(𝜙 − Φ) + 𝜋

2
u
)
+ bin cos

(1
2
(𝜙 − Φ) + 𝜋

2
u
)

(78)

where au (u = 0, 1) is the annihilation operator for one output
port of the MZI, ain and bin are the annihilation operators for the
inputmodes,𝜙 is the unknown phase andΦ is the tunable phase.
The probability of observing a photon in a0 mode, p(0|𝜙), in the
first round is then

p(0|𝜙) = 1
N
⟨𝜓in|a†0a0|𝜓in⟩ (79)

where 1∕N is the probability of picking one photon from the N
photons and ⟨𝜓in|a†0a0|𝜓in⟩ is the probability of detecting this
photon in a0 mode. Similarly, p(1|𝜙) = 1

N
⟨𝜓in|a†1a1|𝜓in⟩. When

the measurement result has been recorded in this round, the
post-measurement state becomes

|𝜓u1
⟩ = au1 |𝜓in⟩ (80)

where u1 = 0, 1 is the result of the first round, that is, u1 = 0
(u1 = 1) means a photon is detected in a0 (a1) mode. Physically,
the post-measurement state becomes a (N − 1)-photon state as
one photon has been absorbed during the measurement, which

is described by the annihilation operator on |𝜓in⟩. Note that |𝜓u1
⟩

is unnormalized, the corresponding normalized state reads

|�̃�u1
⟩ = 1√⟨𝜓u1

|𝜓u1
⟩au1 |𝜓in⟩

= 1√⟨𝜓in|a†u1au1 |𝜓in⟩au1 |𝜓in⟩ (81)

In the next (second) round, the probability of observing a photon
in au2 (u2 = 0, 1) is

p(u2|𝜙) = 1
N − 1

⟨�̃�u1
|a†u2au2 |�̃�u1

⟩
= 1

N − 1

⟨𝜓in|a†u1a†u2au2au1 |𝜓in⟩⟨𝜓in|a†u1au1 |𝜓in⟩ (82)

where 1∕(N − 1) is the probability of picking a photon from the
left N − 1 photons. The post-measurement state can be simi-
larly obtained.
Repeating this process, in themth round the conditional prob-

ability p(um|𝜙) can be expressed as
p(um|𝜙) = 1

N − (m − 1)
⟨�̃�um−1

|a†umaum |�̃�um−1
⟩

= 1
N − (m − 1)

⟨𝜓in|a†umaum |𝜓in⟩⟨𝜓in|a†um−1
aum−1

|𝜓in⟩ (83)

where aum :=
∏m

i=1 aui . The conditional probability, denoted as
p(um|𝜙), of observing a series of results, um = (u1, u2,… , um), is
then

p(um|𝜙) = m∏
i=1

p(ui|𝜙) = (N −m)!
N!

⟨𝜓in|a†umaum |𝜓in⟩ (84)

Based on the conditional probability, the tunable phase, Φm,
can be adjusted. Suppose m − 1 rounds of adaptive measure-
ments have been carried out with the result um−1. In refs. [97,
98], the tunable phase in themth round, Φm, is obtained by max-
imizing the quantity

Mon(Φ) =
∑

um=0,1
p(um)Sum (85)

here Sum is the sharpness function,

Sum =
||||∫

𝜋

−𝜋
p(𝜙|um)ei𝜙d𝜙|||| (86)

and p(um) = ∫ 𝜋

−𝜋 p(um|𝜙)p(𝜙)d𝜙 is the probability of observing um
in the mth round, here p(𝜙) is the probability distribution condi-
tional on the recorded measurement data, um−1. Alternatively we
can write p(um) = p(um|um−1), since it is an online scheme and all
the probabilities in this round should be based on the fact that
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all the results in previous rounds, that is, um−1, have already been
recorded. Therefore,

p(um) =
p(um)
p(um−1)

(87)

with

p(um) = ∫
𝜋

−𝜋
p(um|𝜙)pin(𝜙)d𝜙 (88)

as the probability of observing the result um. Here p(um|𝜙) can
be calculated as in Equation (84) and pin(𝜙) is the original priori
probability before the experiment. If no priori information exists,
it can just be chosen as the uniform distribution, that is, pin(𝜙) =
1∕(2𝜋).
The conditional probability, p(𝜙|um), in Sum can be obtained via

the Bayes’ rule,

p(𝜙|um) = p(um|𝜙)pin(𝜙)
p(um)

(89)

The sharpness function then reads

Sum =
||||∫

𝜋

−𝜋
p(𝜙|um)ei𝜙d𝜙||||

= 1
p(um)

||||∫
𝜋

−𝜋
p(um|𝜙)pin(𝜙)ei𝜙d𝜙|||| (90)

Thus

Mon(Φ) =

∑
um

|||∫ 𝜋

−𝜋 p(um|𝜙)pin(𝜙)ei𝜙d𝜙|||
∫ 𝜋

−𝜋 p(um−1|𝜙)pin(𝜙)d𝜙 (91)

In the first round, the denominator of the above equation should
be set to 1. The optimization is then performed to obtain the op-
timal tunable phase, Φm, which is used in the MZI for the m-
th round. Repeating this approach, a complete online adaptive
policy {Φm} can be obtained according to the recorded results in
all rounds.
Different from the online strategy where {Φm} are determined

through the real-time optimization, {Φm} in the offline strategy
are generated by formulas which are optimized before the ex-
periment. One choice of the target function in the offline strat-
egy, without any measurement data, is to take the average of the
sharpness function over all possible trajectories of um,

Moff (Φ) =
∑
um

||||∫
𝜋

−𝜋
p(um|𝜙)pin(𝜙)ei𝜙d𝜙|||| (92)

The optimal tunable phase, Φm, can then be determined by opti-
mizingMoff (Φ), which can be performed offline. Hentschel and
Sanders[170] provided an offline adaptive measurement scheme
based on the particle swarm optimization (PSO).[171] In their
scheme, the tunable phase in the real experiment is updated via
the rule

Φm = Φm−1 − (−1)um−1ΔΦm (93)

where um−1 = 0, 1 (m ≥ 2) is the result obtained in the m − 1
round experiment, and Φ1 is set manually. With this rule, the
goal of the strategy is to provide a set of good

{ΔΦm} := {ΔΦ1,ΔΦ2,… ,ΔΦM} (94)

via PSO algorithms, where the flow of the algorithm is given
in Algorithm 4. As the number of the trajectories in Equa-
tion (92) grows exponentially (∼ 2N), in practise Moff (Φ) is of-
ten approximated by averaging a reasonable number of sampled
trajectories.[172–174] And typically only a polynomial number of
trajectories are needed to obtain a good approximation. Peng and
Fan[175] further proposed an ansatz that reduces the complexity
to N4. Experimentally, an offline scheme based on the PSO algo-
rithm has been realized by Lumino et al.[176]

Other optimizationmethods, such as the genetic algorithm[177]

and the differential evolution (DE) algorithm,[178] have also been
used in the offline adaptive measurement. Compared to the PSO
algorithm, the performance of the DE algorithm is more ro-
bust, and the DE algorithm also works better with a large photon
number.[174]

Wiseman[179] considered the adaptive homodyne measure-
ment scheme for the phase estimation, which was further
discussed with both the semiclassical approach[180] and the
quantum mechanical approach.[181] The scheme was also ex-
perimentally demonstrated by Armen et al.[182] with coherent
states as the input states. In 1996, D’Ariano et al.[183] discussed
the two-quadrature measurement with squeezed states as the
input states. Further in 2009, Olivares et al.[184] pointed out the
optimal squeezing parameter with respect to the true value of the
unknown phase (or relative phase in the adaptive measurement)
in the homodyne detection and invoked the Bayesian infer-
ence to update the posterior probability. Bayesian estimation
based on continuously monitored environment have also been
studied.[185–190]

The Bayesian estimator is asymptotically unbiased and is capa-
ble to attain the quantum Cramér–Rao bound in the asymptotic
limit. In 2015, Berni et al.[191] experimentally realized the adaptive
homodyne measurement with the squeezed vacuum states and
Bayesian inference. Wheatley et al.[192] used an adaptive homo-
dyne measurement scheme to estimate a stochastically varying
phase shift on a coherent beam utilizing the quantum smoothing
techniques introduced by Tsang.[193] Wiebe and Granade[194] pro-
posed the rejection filtering to approximate the Bayesian infer-
ence which can reduce thememory of samplings. Zheng et al.[195]

experimentally applied this method to an adaptive Bayesian mea-
surement for the optical phase estimation. Adaptive Bayesian es-
timation has also been experimentally applied to multiparame-
ter estimation by Valeri et al.[196] Recently, Fiderer et al.[197] also
used the neural network for the adaptive Bayesian quantum esti-
mation. Joint measurements on conjugate observables have also
been demonstrated.[198]

We note that in practice the choices of themeasurement can be
very limited. For example, in optical systems, the typicalmeasure-
ments are photon counting, homodyne measurement, displace-
ment measurement where the successful rate is also limited by
the hardware efficiency. In practise, it is important to include the
practical constraints in the optimization.
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Algorithm 4 PSO algorithm[170,171]

Initialize Φ(i)
1 and ΔΦ(i)

1 for each i ∈ [1, L];
Initialize all ϕ(i)

1 = 0;
for m = 1,M do

for i = 1, L do
Receive the adjustments of the feedback phase ΔΦ(i)

m ;
Calculate the objective function Moff({ΔΦ(i)

m });
Calculate the personal best adjustments of the feedback phase ΔΦ(i)

m,pb = arg
(

max
k∈[1,m]

Moff

(
{ΔΦ(i)

k }
))

;

end for

Compare all Moff({ΔΦ(i)
m,pb}) and determine the global best adjustments of the feedback phase

ΔΦm,gb = arg
(

max
i∈[1,L]

Moff

(
{ΔΦ(i)

m,pb}
))

;

for i = 1, L do
Calcluate ϕ

(i)
m = c0ϕ

(i)
m−1 + rand() · c1(ΔΦ(i)

m,pb − ΔΦ(i)
m ) + rand() · c2(ΔΦm,gb − ΔΦ(i)

m );

Update the adjustments of the feedback phase ΔΦ(i)
m+1 = ΔΦ(i)

m + ϕ
(i)
m .

end for
end for

6. Summary

The optimization of the schemes is crucial to gain quantum
advantages in quantum metrology. Here we reviewed the re-
cent development of the optimizations in the three steps of
the schemes in quantum metrology: preparation (Section 3),
parameterization (Section 4) and measurement (Section 5). In
the process of state preparation, analytical, semi-analytical and
numerical approaches, are reviewed. In the parameterization
process, both quantum control and quantum error correction
techniques are presented. In the measurement, the optimiza-
tions of the adaptive measurement and other scenarios are
summarized. In practice, typically the optimization of the pa-
rameterization process is first performed which identifies the
optimal control that leads to the channel with the maximal quan-
tum channel Fisher information, the optimal probe state is then
identified according to the obtained channel, finally the optimal
measurement is determined based on the output probe state.
A practical challenge for the implementation of the optimal

schemes, just as in all other quantum technologies, is the curse
of the dimensionality. Although some techniques presented
can reduce the complexity by restricting to a subspace, this
either requires certain symmetries or loses the global optimality.
Practical techniques that can provide optimal schemes for inter-
mediate number—from dozens to thousands—of particles are
highly desired. Another practical challenge is that the systems
in practise may not be well characterized. This can be partially
addressed in terms of the nuisance parameters[199,200] or with a
full multi-parameter quantum estimation.[39,72] [201] The tradeoff
between the optimality and the robustness of the schemes,
however, requires further studies. The optimal scheme in the
finite regime,[202–205] even for the single-parameter estimation,
is still not well-understood and there are plenty of rooms for
optimizations.
Finally we note that these techniques are not only useful in

quantummetrology, but can also be adopted in various other ap-

plications, such as quantumprocess tomography, quantum chan-
nel discrimination, variational quantum eigensolver, quantum
verification, and so forth, and could serve as a bridge among dif-
ferent applications.
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[165] R. Demkowicz-Dobrzański, J. Czajkowski, P. Sekatski, Phy. Rev. X

2017, 7, 041009.
[166] D. Layden, S. Zhou, P. Cappellaro, L. Jiang, Phy. Rev. Lett. 2019, 122,

040502.
[167] Y. Chen, H. Chen, J. Liu, Z. Miao, H. Yuan, arXiv:2003.13010, 2020.
[168] W. Górecki, S. Zhou, L. Jiang, R. Demkowicz-Dobrzański, Quantum
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